Помогите! Решить. Мне надо поделить многочлен на двучлен.

Деление многочлена на линейный двучлен

Линейный двучлен. Теорема Безу.

Линейный двучлен есть многочлен первой степени: a x + b. Если разделить многочлен, содержащий букву x, на линейный двучлен x – b, где b – некоторое число (положительное или отрицательное) , то остаток будет только многочленом нулевой степени (см. параграф "Деление многочленов"), т. е. некоторым числом N, которое можно определить, не находя частного. Более точно, это число равно значению многочлена, получаемому при x = b. Это свойство вытекает из теоремы Безу: многочлен a0 xm + a1 xm-1 + a2 xm-2 + …+ am делится на двучлен x – b с остатком N = a0 bm + a1 bm-1 + a2 bm-2 + …+ am .

Д о к а з а т е л ь с т в о . В соответствии с определением операции деления многочленов имеем:

a0 xm + a1 xm-1 + a2 xm-2 + …+ am = ( x – b ) Q + N ,

где Q – некоторый многочлен, N – некоторое число.
Подставим x = b, тогда слагаемое ( x – b ) Q обращается в нуль, и мы получаем:

a0 bm + a1 bm-1 + a2 bm-2 + …+ am = N .

З а м е ч а н и е . При N = 0 число b является корнем уравнения:

a0 xm + a1 xm-1 + a2 xm-2 + …+ am = 0 .
Теорема доказана.