
Чем теорема отличается от аксиомы? И мне вопросик
Чем теорема отличается от аксиомы? И мне вопросик
Теоре́ма (др.-греч. θεώρημα — «зрелище, вид; взгляд; представление, положение») — утверждение, для которого в рассматриваемой теории существует доказательство (иначе говоря, вывод). В отличие от теорем, аксиомами называются утверждения, которые в рамках конкретной теории принимаются истинными без всяких доказательств или обоснований.
В математических текстах теоремами обычно называют только достаточно важные утверждения. При этом требуемые доказательства обычно кем-либо найдены (исключение составляют в основном работы по логике, в которых изучается само понятие доказательства, а потому в некоторых случаях теоремами называют даже неопределённые утверждения). Менее важные утверждения-теоремы обычно называют леммами, предложениями, следствиями, условиями и прочими подобными терминами. Утверждения, о которых неизвестно, являются ли они теоремами, обычно называют гипотезами.
Аксио́ма (др.-греч. ἀξίωμα — утверждение, положение), постула́т — исходное положение какой-либо теории, не доказываемое в рамках данной теории и лежащее в основе доказательства других ее положений.[1] В современной науке аксиомы — это те положения теории, которые принимаются за исходные, причём вопрос об истинности решается либо в рамках других научных теорий, либо посредством интерпретации данной теории.[1] Аксиоматиза́ция теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно лишь на этих аксиомах, не опираясь на обычное конкретное значение этих объектов и их отношений. Утверждения на основе аксиом называются теоремами. С формальной точки зрения, сами аксиомы также входят в число теорем. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и Евклидовой геометрии. Набор аксиом называется непротиворечивым, если из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание. Аксиомы являются своего рода «точками отсчёта» для построения теорий в любой науке, при этом сами они не доказываются, а выводятся непосредственно из эмпирического наблюдения (опыта) или обосновываются в более глубокой теории. Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система) начиная с определённого уровня сложности либо внутренне противоречива, либо неполна (то есть в достаточно сложных системах найдётся хотя бы одно высказывание, истинность и ложность которого не может быть доказана средствами самой этой системы).[2]
Прочитайте и сами сделайте вывод
Теорема - это утверждение и теорема требует доказательства. А аксиома - это как должное, аксиома не требует доказательств. Над теоремой работают учёные годами, что то доказывают. При этом пользуются аксиомами. В быту аксиома: стул - на нём сидят, а стол - за ним сидят (это чтоб понятней было)
Теорема - это утверждение и теорема требует доказательства. А аксиома - это как должное, аксиома не требует доказательств. Над теоремой работают учёные годами, что то доказывают.
Юлия Сергеевна, я точно не помню. Там чего-то без доказательств, а к чему-то доказательство нужно. Или там где-то что-то однозначно, а что-то под сомнение ставится.
Если коротко,то...Теорема-утверждение,для которого требуется доказательство.Оксиома-не требует доказательства.
Аксиома принимается без доказательств, а теорему устанешь доказывать
Аксиома, в отличие то теоремы, не требует доказательств
аксиомы не нужно доказывать,как теоремы
...теорема доказуема,а аксиома нет.
У меня математический кретинизм)))
аксиому не нужно доказывать
я не разбираюсь в геометрии
аксиому не надо доказывать
теорему надо ещё доказать
теорему нужно доказывать
я не помню....а ты помнишь