Естественные науки

Расскажите пожалуйста "Теорему Виетта" ?!

Теорема Виета. Сумма корней приведенного квадратного трехчлена x2 + px + q = 0 равна его второму коэффициенту p с противоположным знаком, а произведение – свободному члену q, т. е. x1 + x2 = – p и x1 x2 = q

* Теорема Виета замечательна тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные выражения x1 + x2 и x1 x2. Так, еще не зная, как вычислить корни уравнения x2 – x – 1 = 0, мы, тем не менее, можем сказать, что их сумма должна быть равна 1, а произведение должно равняться –1.
* Теорема Виета позволяет угадывать целые корни квадратного трехчлена. Так, находя корни квадратного уравнения x2 – 5x + 6 = 0, можно начать с того, чтобы попытаться разложить свободный член (число 6) на два множителя так, чтобы их сумма равнялась бы числу 5. Это разложение очевидно: 6 = 2 × 3, 2 + 3 = 5. Отсюда должно следовать, что числа 2 и 3 являются искомыми корнями.

Обратная Теорема Виета. Если числа x1 и x2 удовлетворяют соотношениям x1 + x2 = – p и x1 x2 = q, то они удовлетворяют квадратному уравнению x2 + px + q = 0.

Теорема Виета применяется для подбора корней квадратных уравнений. Можно расширить рамки использования этой теоремы, например, для решения систем уравнений. Это сокращает время и упрощает решение системы.

Рассмотрим систему уравнений x+y=5 xy=6 Если допустить, что x и y – корни некоторого приведенного квадратного уравнения, сумма корней которого равна 5, а их произведение равно 6, то получим совокупность двух систем x=3 y=2 и x=2 y=3 .

Соотношения между корнями и коэффициентами приведенного квадратного уравнения x2 + px + q = 0.

* x21+x22=(x1+x2)2−2x1x2 x21+x22=p2−2q ;
* x31+x32=(x1+x2)((x1+x2)2−3x1x2)x31+x32=−p(p2−3q)
НП
Никита Петров
556
Лучший ответ
http://kvadur.info/viete.php - здесь сама теорема и форма для решения онлайн
AT
Alexey Tsarev
21 406
Теорема Виета. Сумма корней приведенного квадратного трехчлена x2 + px + q = 0 равна его второму коэффициенту p с противоположным знаком, а произведение – свободному члену q, т. е. x1 + x2 = – p и x1 x2 = q
нафиг виета она не всегда работает, дискриминант ищи
Игорь .
Игорь .
1 030
ну а че тут рассказывать то,
Для приведенного квадратного уравнения (т. е. такого, коэффициент при x2 в котором равен единице) x2 + px + q = 0 сумма корней равна коэффициенту p, взятому с обратным знаком, а произведение корней равно свободному члену q:
x1 + x2 = -p
x1x2 = q

В случае неприведенного квадратного уравнения ax2 + bx + c = 0:
x1 + x2 = -b / a
x1x2 = c / a
спиши. ру
гугл