Естественные науки
При каком фазовом угле Венера видна наиболее ярко?
Пусть расстояние Венеры от Солнца 108 миллионов км, Земли — 150 миллионов км. Планеты вращаются по круговым орбитам в одной плоскости. Следует математически обосновать и вычислить фазовый угол, при котором Венера с Земли видна наиболее ярко.
Думаю при почти 180 градусов, когда солнце между обоими планетами, ее плохо видно изза света солнца. Когда угол 0, то ее совсем не видно, так как она темной стороной к земле.
Представим себе венеру часовой стрелкой а землю минутной, основание стрелок сонце. Если при 45 градусах венеру само хорошо видно, мешает разная длина стрелок. Угол должен быть больше. Этот угол равен, когда катета-расстояние между большой и маленькими стрелками и маленькой стрелкой 90 градусов. синус⁻¹ маленькой стрелки / большую стрелку.
арксинус 108/150=46,05 °
Представим себе венеру часовой стрелкой а землю минутной, основание стрелок сонце. Если при 45 градусах венеру само хорошо видно, мешает разная длина стрелок. Угол должен быть больше. Этот угол равен, когда катета-расстояние между большой и маленькими стрелками и маленькой стрелкой 90 градусов. синус⁻¹ маленькой стрелки / большую стрелку.
арксинус 108/150=46,05 °
Сайты для любителей астрономии говорят, что блеск Венеры наиболее яркий вблизи максимальной элонгации, но не в самих точках максимальной элонгации. Иначе бы задача лишась смысла, потому что тогда фазовый угол (между направлениями от планеты на Солнце и Землю) представляет собой перпендикуляр, опущенный от Солнца, на линию от Земли - касательную к орбите Венеры, т. е. 90°.
Так после прохождения восточной элонгации планета продолжает приближаться к Земле и её яркость увеличивается по мере сокращения расстояния. Но одновременно уменьшается её серп, т. е. фаза, которая измеряется отношением площади освещённой части видимого диска ко всей его площади. После точки максимальной элонгации она уменьшается с 0.5 до 0.
Обозначим площадь диска как S, его радиус - R, а толщину серпа - d. Терминатор Венеры представляет собой половину эллипса, имеющего большую полуось R и малую полуось (R – d).
Площадь этого эллипса равна
Sэ = Pi x R x (R – d).
Тогда площадь освещенного серпа составит
Sс = (S - Sэ) /2 = Pi x R x d / 2 = Pi x R^2 x d / 2R.
Отношение d / 2R есть фаза, обозначим её как F.
Sс = Pi x R^2 x F = S x F.
Связь между фазой Ф и фазовым углом Y определяется формулой:
F = cos^2 (Y/2)
Sс = S x cos^2 (Y/2)
Яркость планеты (её серпа) определяется отражательными свойствами ее поверхности (или облачного слоя), расстояниями от Солнца и Земли, а также тем, как наблюдается с Земли дневная сторона планеты обращенная к Солнцу определяется по формуле:
где Isun - поток энергии от Солнца вблизи Земли,
А - коэффициента отражения поверхности,
d - расстояние между Землёй и Венерой.
Isun, А и S можно считать постоянными величинами, изменение яркости зависит от соотношения cos^2 (Y/2) / d^2 или cos (Y/2) / d.
В треугольнике «Солнце-Венера-Земля» нам известны две стороны и угол, не лежащий между ними Y. Запишем выражение теоремы косинусов:
Это квадратное уравнение имеет один положительный корень:
При построении графика функции получилась следующая кривая:
Экстрим приходится на Y = 0.65 Pi = 117°.
Проверим значение этой величины:
F = cos^2 (Y/2) = cos^2 (117°/2) = 0,27.
Что неплохо согласуется с учётом приблизительных значений и допущений с монографией "Поверхностные яркости небесных объектов"
Так после прохождения восточной элонгации планета продолжает приближаться к Земле и её яркость увеличивается по мере сокращения расстояния. Но одновременно уменьшается её серп, т. е. фаза, которая измеряется отношением площади освещённой части видимого диска ко всей его площади. После точки максимальной элонгации она уменьшается с 0.5 до 0.
Обозначим площадь диска как S, его радиус - R, а толщину серпа - d. Терминатор Венеры представляет собой половину эллипса, имеющего большую полуось R и малую полуось (R – d).
Площадь этого эллипса равна
Sэ = Pi x R x (R – d).
Тогда площадь освещенного серпа составит
Sс = (S - Sэ) /2 = Pi x R x d / 2 = Pi x R^2 x d / 2R.
Отношение d / 2R есть фаза, обозначим её как F.
Sс = Pi x R^2 x F = S x F.
Связь между фазой Ф и фазовым углом Y определяется формулой:
F = cos^2 (Y/2)
Sс = S x cos^2 (Y/2)
Яркость планеты (её серпа) определяется отражательными свойствами ее поверхности (или облачного слоя), расстояниями от Солнца и Земли, а также тем, как наблюдается с Земли дневная сторона планеты обращенная к Солнцу определяется по формуле:
где Isun - поток энергии от Солнца вблизи Земли,
А - коэффициента отражения поверхности,
d - расстояние между Землёй и Венерой.
Isun, А и S можно считать постоянными величинами, изменение яркости зависит от соотношения cos^2 (Y/2) / d^2 или cos (Y/2) / d.
В треугольнике «Солнце-Венера-Земля» нам известны две стороны и угол, не лежащий между ними Y. Запишем выражение теоремы косинусов:
Это квадратное уравнение имеет один положительный корень:
При построении графика функции получилась следующая кривая:
Экстрим приходится на Y = 0.65 Pi = 117°.
Проверим значение этой величины:
F = cos^2 (Y/2) = cos^2 (117°/2) = 0,27.
Что неплохо согласуется с учётом приблизительных значений и допущений с монографией "Поверхностные яркости небесных объектов"
Думаю при почти 180 градусов
Похожие вопросы
- Если в центре почти каждой галактики черная дыра, почему на фото всех галактик мы видим очень яркий светящийся центр?
- Простая физика - фазовые переходы
- С како планеты Солнечной системы Земля будет выглядеть ярче в максимуме блеска - с Венеры или Марса? Почему?
- Почему ярко светит ночью планета Венера на звездном небе?
- вопрос про то как мы можем видеть венеру с земли, это же невозможно
- Какая сейчас самая яркая звезда на небе? Вчера с мужем видели яркую звезду и поспорили - Венера или Марс?
- Почему-Для фазовых переходов II рода Т. ф. п. равна нулю.?Что это ваще такое-фазовый переход 2-го рода?
- Будет ли Венера пригодной для жизни?
- Вы заметили, что Венера стала больше и ярче? Она приближается к Земле ?
- Как найти Марс на небе? Яркая звезда вечером на западе это Венера или Марс?