Домашние задания: Другие предметы

.Сформулируйте и докажите теорему о биссектрисе равнобедренного треугольника.

Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.

Приложения к ответу 464941
Kатя Pогозина
Kатя Pогозина
767
Лучший ответ
гг вп
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Нравится Пожаловаться
рема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Вверху, кроме первого, аутисты
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
УУ
Улук Ули
246
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
еорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
hysteria.ddns.net:7777
рема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Volk Gemer, 3 года назад
Ученик
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.

Ден4ик Боярский, 3 года назад
Знаток
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.

Анна Ферльченко, 1 год назад
Ученик
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.

александрлановенко, 5 месяцев назад
Ученик
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Akmaral Tusipbaeva
Akmaral Tusipbaeva
127
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Elena Dorosheva
Elena Dorosheva
113
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.

Похожие вопросы