
Домашние задания: Другие предметы
.Сформулируйте и докажите теорему о биссектрисе равнобедренного треугольника.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.


гг вп
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Нравится Пожаловаться
Нравится Пожаловаться
рема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Вверху, кроме первого, аутисты
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
еорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
hysteria.ddns.net:7777
рема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Volk Gemer, 3 года назад
Ученик
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Ден4ик Боярский, 3 года назад
Знаток
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Анна Ферльченко, 1 год назад
Ученик
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
александрлановенко, 5 месяцев назад
Ученик
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Ученик
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Ден4ик Боярский, 3 года назад
Знаток
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Анна Ферльченко, 1 год назад
Ученик
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
александрлановенко, 5 месяцев назад
Ученик
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD-общая; углы 1 и 2 равны т. к. AD-биссектриса; AB=AC,т. к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
Похожие вопросы
- сформулируйте и докажите теорему,выражающую первый признак равенства треугольников
- Сформулировать и доказать теорему, выражающую третий признак равенства треугольников
- Сформулируйте и докажите теорему, выражающую второй признак равенства треугольников!
- сформулируйте и докажите теорему выражающию первы признак равенства треугольников
- Дать определение средней линии треугольника. Доказать теорему о средней линии треугольника.
- Помогите... Сформулируйте и докажите теорему о перпендикуляре, проведенном из данной точки к данной прямой.
- Какая прямая называется касательной к окружности? Сформулируйте и докажите теорему о свойстве касательной.
- Сформулируйте и докажите теорему об окружности, описанной около правильного многоугольника.
- Докажите, что в равнобедренном треугольнике биссектрисы углов при основании равны. Плиииз. помогите
- В равнобедренном треугольнике биссектрисы углов при основании образуют при пересечении угол, равный 52 (градуса) .