Гуманитарные науки

Какой основной тип иерархии используется в методе анализа иерархий?

Метод анализа иерархий

Для решения задач подобного рода в аналитическом планировании широко применяется метод анализа иерархий (далее МАИ) , разработанный Т. Саати. Сегодня его используют уже повсеместно от риэлтеров, при оценке недвижимости, до кадровиков, при замещении вакантных должностей. Воспользуемся этим методом и мы для выбора хостинг-провайдера.

Первым этапом применения МАИ является структурирование проблемы выбора в виде иерархии или сети. В наиболее элементарном виде иерархия строится с вершины (цели) , через промежуточные уровни-критерии (технико-экономические параметры) к самому нижнему уровню, который в общем случае является набором альтернатив (хостинг-провайдеров в нашем случае) .

После иерархического воспроизведения проблемы устанавливаются приоритеты критериев и оценивается каждая из альтернатив по критериям. В МАИ элементы задачи сравниваются попарно по отношению к их воздействию на общую для них характеристику. Система парных сведений приводит к результату, который может быть представлен в виде обратно симметричной матрицы. Элементом матрицы a(i,j) является интенсивность проявления элемента иерархии i относительно элемента иерархии j, оцениваемая по шкале интенсивности от 1 до 9, предложенной автором метода, где оценки имеют следующих смысл:
Таблица 1.
1 - равная важность

3 - умеренное превосходство одного над другим

5 - существенное превосходство одного над другим

7 - значительное превосходство одного над другим

9 - очень сильное превосходство одного над другим

2, 4, 6, 8 - соответствующие промежуточные значения

Если при сравнении одного фактора i с другим j получено a(i,j) = b, то при сравнении второго фактора с первым получаем a(j,i) = 1/b.

Опыт показал, что при проведении попарных сравнений в основном ставятся следующие вопросы. При сравнении элементов А и Б:
Какой из них важнее или имеет большее воздействие ?
Какой из них более вероятен ?
Какой из них предпочтительнее ?
Относительная сила, величина или вероятность каждого отдельного объекта в иерархии определяется оценкой соответствующего ему элемента собственного вектора матрицы приоритетов, нормализованного к единице. Процедура определения собственных векторов матриц поддается приближению с помощью вычисления геометрической средней.
ТД
Татьяна Дебикова
63 824
Лучший ответ