Домашние задания: Другие предметы
что такое округление десятичной дроби? прошу ответить желательно своими словами
При округлении числа до какого-либо разряда все следующие за этим разрядом цифры заменяют нулями, а если они стоят после запятой — отбрасывают. Если первая замененная нулем или отброшенная цифра равна 0, 1, 2, 3 или 4, то стоящую перед ней цифру не изменяют. Если первая замененная нулем или отброшенная цифра равна 5, 6, 7, 8 или 9, то стоящую перед ней цифру увеличивают на единицу. http://www.mathematics-repetition.com/tag/okruglenie-desyatitchnh-drobey
Округление — математическая операция, позволяющая уменьшить количество знаков в числе за счёт замены числа его приближённым значением с определённой точностью.
В разных сферах могут применяться различные методы округления. Во всех этих методах «лишние» знаки обнуляют (отбрасывают), а предшествующий им знак корректируется по какому-либо правилу.
Округление к ближайшему целому (англ. rounding) — наиболее часто используемое округление, при котором число округляется до целого, модуль разности с которым у этого числа минимален. В общем случае, когда число в десятичной системе округляют до N-ого знака, правило может быть сформулировано следующим образом: если N+1 знак < 5, то N-ый знак сохраняют, а N+1 и все последующие обнуляют;
если N+1 знак ≥ 5, то N-ый знак увеличивают на единицу, а N+1 и все последующие обнуляют;
Например: 11,9 → 12; −0,9 → −1; −1,1 → −1; 2,5 → 3.Максимальная дополнительная абсолютная погрешность, вносимая при таком округлении (погрешность округления), составляет ±0,5 последнего сохраняемого разряда.
Округление к меньшему по модулю (округление к нулю, целое англ. fix, truncate, integer) — самое «простое» округление, поскольку после обнуления «лишних» знаков предшествующий знак сохраняют, то есть технически оно состоит в отбрасывании лишних знаков. Например, 11,9 → 11; −0,9 → 0; −1,1 → −1). При таком округлении может вноситься погрешность в пределах единицы последнего сохраняемого разряда, причём в положительной части числовой оси погрешность всегда отрицательна, а в отрицательной — положительна.
Округление к большему (округление к +∞, округление вверх, англ. ceiling) — если обнуляемые знаки не равны нулю, предшествующий знак увеличивают на единицу, если число положительное, или сохраняют, если число отрицательное. В экономическом жаргоне — округление в пользу продавца, кредитора (лица, получающего деньги). В частности, 2,6 → 3, −2,6 → −2. Погрешность округления — в пределах +1 последнего сохраняемого разряда.
Округление к меньшему (округление к −∞, округление вниз, англ. floor) — если обнуляемые знаки не равны нулю, предшествующий знак сохраняют, если число положительное, или увеличивают на единицу, если число отрицательное. В экономическом жаргоне — округление в пользу покупателя, дебитора (лица, отдающего деньги). Здесь 2,6 → 2, −2,6 → −3. Погрешность округления — в пределах −1 последнего сохраняемого разряда.
Округление к большему по модулю (округление к бесконечности, округление от нуля) — относительно редко используемая форма округления. Если обнуляемые знаки не равны нулю, предшествующий знак увеличивают на единицу. Погрешность округления составляет +1 последнего разряда для положительных и −1 последнего разряда для отрицательных чисел.
особо варианты округления 0,5 к ближайшему целому
Математическое округление — округление всегда в бо́льшую по модулю сторону (предыдущий разряд всегда увеличивается на единицу).
Банковское округление (англ. banker's rounding) — округление для этого случая происходит к ближайшему чётному, то есть 2,5 → 2, 3,5 → 4.
Случайное округление — округление происходит в меньшую или большую сторону в случайном порядке, но с равной вероятностью (может использоваться в статистике). Также часто используется округление с неравными вероятностями (вероятность округления вверх равна дробной части), этот способ делает накопление ошибок случайной величиной с нулевым математическим ожиданием.
Чередующееся округление — округление происходит в меньшую или большую сторону поочерёдно.
Во всех вариантах в случае, когда (N+1)-й знак не равен 5 или последующие знаки не равны нулю, округление происходит по обычным правилам: 2,49 → 2; 2,51 → 3.
В разных сферах могут применяться различные методы округления. Во всех этих методах «лишние» знаки обнуляют (отбрасывают), а предшествующий им знак корректируется по какому-либо правилу.
Округление к ближайшему целому (англ. rounding) — наиболее часто используемое округление, при котором число округляется до целого, модуль разности с которым у этого числа минимален. В общем случае, когда число в десятичной системе округляют до N-ого знака, правило может быть сформулировано следующим образом: если N+1 знак < 5, то N-ый знак сохраняют, а N+1 и все последующие обнуляют;
если N+1 знак ≥ 5, то N-ый знак увеличивают на единицу, а N+1 и все последующие обнуляют;
Например: 11,9 → 12; −0,9 → −1; −1,1 → −1; 2,5 → 3.Максимальная дополнительная абсолютная погрешность, вносимая при таком округлении (погрешность округления), составляет ±0,5 последнего сохраняемого разряда.
Округление к меньшему по модулю (округление к нулю, целое англ. fix, truncate, integer) — самое «простое» округление, поскольку после обнуления «лишних» знаков предшествующий знак сохраняют, то есть технически оно состоит в отбрасывании лишних знаков. Например, 11,9 → 11; −0,9 → 0; −1,1 → −1). При таком округлении может вноситься погрешность в пределах единицы последнего сохраняемого разряда, причём в положительной части числовой оси погрешность всегда отрицательна, а в отрицательной — положительна.
Округление к большему (округление к +∞, округление вверх, англ. ceiling) — если обнуляемые знаки не равны нулю, предшествующий знак увеличивают на единицу, если число положительное, или сохраняют, если число отрицательное. В экономическом жаргоне — округление в пользу продавца, кредитора (лица, получающего деньги). В частности, 2,6 → 3, −2,6 → −2. Погрешность округления — в пределах +1 последнего сохраняемого разряда.
Округление к меньшему (округление к −∞, округление вниз, англ. floor) — если обнуляемые знаки не равны нулю, предшествующий знак сохраняют, если число положительное, или увеличивают на единицу, если число отрицательное. В экономическом жаргоне — округление в пользу покупателя, дебитора (лица, отдающего деньги). Здесь 2,6 → 2, −2,6 → −3. Погрешность округления — в пределах −1 последнего сохраняемого разряда.
Округление к большему по модулю (округление к бесконечности, округление от нуля) — относительно редко используемая форма округления. Если обнуляемые знаки не равны нулю, предшествующий знак увеличивают на единицу. Погрешность округления составляет +1 последнего разряда для положительных и −1 последнего разряда для отрицательных чисел.
особо варианты округления 0,5 к ближайшему целому
Математическое округление — округление всегда в бо́льшую по модулю сторону (предыдущий разряд всегда увеличивается на единицу).
Банковское округление (англ. banker's rounding) — округление для этого случая происходит к ближайшему чётному, то есть 2,5 → 2, 3,5 → 4.
Случайное округление — округление происходит в меньшую или большую сторону в случайном порядке, но с равной вероятностью (может использоваться в статистике). Также часто используется округление с неравными вероятностями (вероятность округления вверх равна дробной части), этот способ делает накопление ошибок случайной величиной с нулевым математическим ожиданием.
Чередующееся округление — округление происходит в меньшую или большую сторону поочерёдно.
Во всех вариантах в случае, когда (N+1)-й знак не равен 5 или последующие знаки не равны нулю, округление происходит по обычным правилам: 2,49 → 2; 2,51 → 3.
отрезание мелких значащих разрядов. Это вроде как при при подсчете цены весового товара, округляют сейчас до рублей
это как тебе говорят в магазине- с вас 0,55 копеек, а вы даете 0,60 копеек. вот и округлили)
Сергей Усачев
а если тебе говорят с вас 0,54 копейки... а ты даёшь 50...прокатит?)))
Марина Ерофеева
а что такое округление значащей цифры десятичной дроби?
Похожие вопросы
- Умножение десятичных дробей.
- что значит умножить десятичную дробь на натуральное число?
- Как перевести десятичную дробь в обычную дробь?
- Доклад по матаматике о возникновение десятичных дробей 5 класс
- Доклад о возникновении десятичных дробей 5 класс
- Обратите в десятичные дроби: (см. внутри).
- Запишите десятичную дробь в виде обыкновенной дроби или смешанного числа.
- помогите мне придумать сказку (небольшую) на тему: десятичная дробь или дроби!
- Если в некоторой десятичной дроби перенести запятую вправо через один знак то она увеличится на 32,13. Найдите эту дробь
- представьте в виде обыкновенной дроби бесконечную десятичную дробь 0,5(6)