Домашние задания: Другие предметы

Хей ещё одна задача про банк, Ток на моём аккаунте вопросы закончились

В банке денежный вклад увеличивается с каждым годом на 20%. Сколько рублей вкладчик положил в банк, если через год у него на вкладе 108.000 руб.?
Руслан ///////
Руслан ///////
159
исчерпал лимит.. это ХОРОШО.
МБ ЗАПРОСИШЬ ЧЕРЕЗ ПОИСК
решение задач на %
и станешь разбираться.
пример-
что можно найти в Сети:
. Решение задач с использованием понятия коэффициента увеличения..

Чтобы увеличить положительное число а на р процентов, следует умножить число а на коэффициент увеличения к=(1+0,01р).

Чтобы уменьшить положительное число а на р процентов, следует умножить число а на коэффициент уменьшения к= (1-0,01р).

Пример. Вклад, вложенный в сбербанк два года назад, достиг суммы, равной 13125 руб. Каков был первоначальный вклад при 25% годовых?

Решение. Если а (рублей) – размер первоначального вклада, то в конце первого года вклад составит 1,25а а в конце второго года размер вклада составит 1,25 *1,25а. Решая уравнение 1,25* 1,25а=13125, находим а=8400.

Ответ: 8400 руб.

Пример. В феврале цена на нефть увеличилась на 12% по сравнению с январской. В марте цена нефти упала на 25%. На сколько процентов мартовская цена изменилась по сравнению с январской?

Решение. Если х – январская цена нефти, то февральская цена нефти равна

(1 +0,01*12)х = 1,12х. Чтобы вычислить мартовскую цену у на нефть, следует умножить февральскую цену 1,12х на (1-0,01*25)=0,75, т. е. у=0,75 1,12х=0,84х, мартовская цена отличается от январской на (0,84х) /х100 –100=84-100= -16(%), т. е. цена упала на 16 %

Ответ: цена упала на 16%.

Правило 5. Чтобы найти, на сколько % положительное число у отличается от положительного числа а, следует вычислить, сколько % у составляет от а, а затем от полученного числа отнять а.

Глава 2. Разные задачи на проценты ( с решениями).

В данной главе рассматривается выборка задач из различных источников, которые охватывают весь теоретический материал, который излагался выше, предлагаем свои решения. Отметим, что предложенный способ решения не является единственным.

2.1 Тестовые задания на проценты.

Задача 1.Товар стоил тысячу рублей. Продавец поднял цену на 10%, а через месяц снизил её на 10%.Сколько стал стоить товар?

Решение. Пусть товар стоил 1000руб., после повышения цены на 10% он стал стоить 1,1*1000 руб. После понижения этой цены на 10%, он стал стоить 0,9*1,1*1000=990 руб.

Ответ. 990 руб.

Задача 2.Собрали 100 кг грибов. Оказалось, что их влажность 99%. Когда грибы подсушили, влажность снизилась до 98%. Какой стала масса этих грибов после подсушивания?

Решение. Так как влажность грибов составляет 99%, это означает, что на так называемое «сухое вещество приходится 1% грибов, т. е 1 кг, после сушки влажность составляет 98%, т. е. на «сухое вещество» приходится 2%, т. е 1кг это 0,02 подсушенных грибов, 1 кг : 0,02=50 кг.

Ответ. 50 кг.

Задача 3. Цена входного билета на стадион была 1 рубль 80 копеек. После снижения входной платы число зрителей увеличилось на 50% , а выручка выросла на 25% .Сколько стал стоить билет после снижения?

Решение. Пусть зрителей, до понижения цены, на стадион приходило А чел. и выручка составляла 1,8А руб. После понижения цены, цена 1,8*р, зрителей стало 1,5А, выручка составляет 1,8*р*1,5*А руб. С другой стороны, выручка повысилась на 25%, т. е. составляет 1,25*1,8А. Получаем 1,8*р*1,5*А=1,25*1,8А., откуда р=12,5/15, тогда билет стоит 1,8*12,5/15=1,5 руб.

Ответ. 1руб. 50 коп
Елена Пташник
Елена Пташник
88 309
Лучший ответ
108000/120=900.
900×100=90000
Ответ: 90000.
28,000 тыс р?

Похожие вопросы