Выпущенный вертикально вверх со скоростью 300 м/с снаряд разорвался в верхней точке траектории на два осколка равной массы. Первый осколок полетел вертикально вниз, а второй - вертикально вверх. Осколки упали на землю с интервалом времени 12 с.
a) Через какой промежуток времени после разрыва второй осколок снова оказался на высоте разрыва?
б) Чему равна скорость осколков относительно земли после разрыва?
в) Чему равно расстояние между осколками через 2 с после разрыва?
г) До какой высоты над землёй поднялся второй осколок?
д) С какими скоростями осколки упали на землю?
Домашние задания: Физика
Физика 10 класс. Законы сохранения энергии
Снаряд имел скорость v0=300 м/с, запишем уравнение движения
(1) x(t) = v0*t - 0.5*g*t^2, где g = 10 м/с^2
Верхняя точка - это та где скорость равна нулю; формула для скорости
v(t) = v0 - g*t
Тогда верхняя точка достигается за время t_max
v(t_max) = v0 - g*t_max = 0 =>
(2) t_max = v0/g - время за которое снаряд долетел до верхней точки
Тогда можем найти высоту на которой произошёл взрыв, подставим (2) в (1)
x(t_max) = v0*v0/g - 0.5*g *(v0/g)^2 = 0.5*v0^2/g = x0 - обозначим x0
Из условия задачи можем записать закон сохранения импульса для двух осколков
v1*m - v2*m = 0 => v1 = v2 - скорости двух осколков одинаковы по модулю и разные по направлению вдоль оси x
Уравения движения этих осколков:
(3) x1(t) = x0 - v1*t - 0.5*g*t^2
(4) x2(t) = x0 + v2*t - 0.5*g*t^2 = x0 + v1*t - 0.5*g*t^2
x0 высота взрыва, её мы нашли ранее, разный знак - у скорости v1 обусловлен тем что тело движется против оси x
Мы знаем время между паденем первого и второго тела dt = t2 - t1 = 12
Падение это когда x1(t1)=0 и x2(t2)=0 то есть из уравнеий (3) и (4) имеем
(5) x0 - v1*t1 - 0.5*g*t1^2=0 - для первого тела
(6) x0 + v1*t2 - 0.5*g*t2^2=0 - для второго
Мы можем вычесть из (6) уравнения (5) уравнение, тогда получится
(7) v1*(t2 + t1) - 0.5*g*(t2^2 - t1^2) = 0
Разность квадратов t2^2 - t1^2 = (t2 - t1)*(t2 + t1) = dt*(t2 + t1), где dt дано в задаче; подставляем в (7)
v1*(t2 + t1) - 0.5*g*dt*(t2 + t1)=0, (t2 + t1) - можно сократить
v1- 0.5*g*dt=0
v1 = 0.5*g*dt - нашли скорость с которой разлетаются осколки
Чтобы найти время за которое второй осколок осколок снова окажется на высоте надо в уравнение (4) подставить x = x0, тогда
x0 = x0 + v1*t - 0.5*g*t^2
v1*t - 0.5*g*t^2 = 0
t*(v1 - 0.5*g*t)=0
t=0 и t = 2*v1/g = 2*0.5*g*dt/g = dt
Берём второй корень в ответ
(а) t = dt = 12 с
Скорость осколков относительно Земли равна
(б) v1 = 0.5*g*dt = 0.5*10*12 = 60 м/с
Расстояние между осколками через 2 секунды это
(в) x2(2) - x1(2) = v1*(2+2) = 60*4 =240 м
Второй осколок поднялся до момента когда его скорость равнялась 0, т. е
v2(t2_max) = v1 - g*t_max = 0 => t_max = v1/g, тогда максимальная высота
x2(t_max) = x0 + v1*( v1/g) - 0.5*g*( v1/g)^2 = x0 + 0.5*v1^2/g = 0.5*(v0^2+v1^2)/g
(г) тут ответ 0.5*(v0^2+v1^2)/g - сюда надо подставить v0=300 v1=60 g=10
Чтобы узнать с какой скоростью осколки упали для первого запишем ЗСЭ
E1 = m*g*x0 + 0.5*m*v1^2 - первое слагаемое отвечает за потенциальную энергию, второе за кинетическую, во время падения потенциальная энергия равна 0
Поэтому E1 = 0.5*m*v1_(кон) ^2
Тогда приравниваем эти энергии
0.5*m*v1_(кон) ^2 = m*g*x0 + 0.5*m*v1^2 вспонимаем что x0 = 0.5*v0^2/g
v1_(кон) ^2 = v0^2 + v1^2
v1_(кон) = sqrt( v0^2 + v1^2 ) - здесь sqrt квадратный корень
Такая же скорость будет и у второго осколка, это можно увидеть из того что пиковая высота второго тела x2_max = 0.5*(v0^2+v1^2)/g тогда из ЗСЭ
0.5*m*v2_(кон) ^2 = m*g*0.5*(v0^2+v1^2)/g
v2_(кон) ^2 = (v0^2+v1^2)
Поэтому
(д) корень квадратный из v0^2+v1^2, тоже подставить v0=300 м/с, v1=60 м/с
(1) x(t) = v0*t - 0.5*g*t^2, где g = 10 м/с^2
Верхняя точка - это та где скорость равна нулю; формула для скорости
v(t) = v0 - g*t
Тогда верхняя точка достигается за время t_max
v(t_max) = v0 - g*t_max = 0 =>
(2) t_max = v0/g - время за которое снаряд долетел до верхней точки
Тогда можем найти высоту на которой произошёл взрыв, подставим (2) в (1)
x(t_max) = v0*v0/g - 0.5*g *(v0/g)^2 = 0.5*v0^2/g = x0 - обозначим x0
Из условия задачи можем записать закон сохранения импульса для двух осколков
v1*m - v2*m = 0 => v1 = v2 - скорости двух осколков одинаковы по модулю и разные по направлению вдоль оси x
Уравения движения этих осколков:
(3) x1(t) = x0 - v1*t - 0.5*g*t^2
(4) x2(t) = x0 + v2*t - 0.5*g*t^2 = x0 + v1*t - 0.5*g*t^2
x0 высота взрыва, её мы нашли ранее, разный знак - у скорости v1 обусловлен тем что тело движется против оси x
Мы знаем время между паденем первого и второго тела dt = t2 - t1 = 12
Падение это когда x1(t1)=0 и x2(t2)=0 то есть из уравнеий (3) и (4) имеем
(5) x0 - v1*t1 - 0.5*g*t1^2=0 - для первого тела
(6) x0 + v1*t2 - 0.5*g*t2^2=0 - для второго
Мы можем вычесть из (6) уравнения (5) уравнение, тогда получится
(7) v1*(t2 + t1) - 0.5*g*(t2^2 - t1^2) = 0
Разность квадратов t2^2 - t1^2 = (t2 - t1)*(t2 + t1) = dt*(t2 + t1), где dt дано в задаче; подставляем в (7)
v1*(t2 + t1) - 0.5*g*dt*(t2 + t1)=0, (t2 + t1) - можно сократить
v1- 0.5*g*dt=0
v1 = 0.5*g*dt - нашли скорость с которой разлетаются осколки
Чтобы найти время за которое второй осколок осколок снова окажется на высоте надо в уравнение (4) подставить x = x0, тогда
x0 = x0 + v1*t - 0.5*g*t^2
v1*t - 0.5*g*t^2 = 0
t*(v1 - 0.5*g*t)=0
t=0 и t = 2*v1/g = 2*0.5*g*dt/g = dt
Берём второй корень в ответ
(а) t = dt = 12 с
Скорость осколков относительно Земли равна
(б) v1 = 0.5*g*dt = 0.5*10*12 = 60 м/с
Расстояние между осколками через 2 секунды это
(в) x2(2) - x1(2) = v1*(2+2) = 60*4 =240 м
Второй осколок поднялся до момента когда его скорость равнялась 0, т. е
v2(t2_max) = v1 - g*t_max = 0 => t_max = v1/g, тогда максимальная высота
x2(t_max) = x0 + v1*( v1/g) - 0.5*g*( v1/g)^2 = x0 + 0.5*v1^2/g = 0.5*(v0^2+v1^2)/g
(г) тут ответ 0.5*(v0^2+v1^2)/g - сюда надо подставить v0=300 v1=60 g=10
Чтобы узнать с какой скоростью осколки упали для первого запишем ЗСЭ
E1 = m*g*x0 + 0.5*m*v1^2 - первое слагаемое отвечает за потенциальную энергию, второе за кинетическую, во время падения потенциальная энергия равна 0
Поэтому E1 = 0.5*m*v1_(кон) ^2
Тогда приравниваем эти энергии
0.5*m*v1_(кон) ^2 = m*g*x0 + 0.5*m*v1^2 вспонимаем что x0 = 0.5*v0^2/g
v1_(кон) ^2 = v0^2 + v1^2
v1_(кон) = sqrt( v0^2 + v1^2 ) - здесь sqrt квадратный корень
Такая же скорость будет и у второго осколка, это можно увидеть из того что пиковая высота второго тела x2_max = 0.5*(v0^2+v1^2)/g тогда из ЗСЭ
0.5*m*v2_(кон) ^2 = m*g*0.5*(v0^2+v1^2)/g
v2_(кон) ^2 = (v0^2+v1^2)
Поэтому
(д) корень квадратный из v0^2+v1^2, тоже подставить v0=300 м/с, v1=60 м/с
сделай вопрос лидером он не простой
Nazerke Sulekenova
Сфигали?
Ангеліна Мушка
потому что так тебе по-существу никто не ответит. А так есть шанс
Похожие вопросы
- Физика 10 класс Основные свойства твёрдых тел
- Пожалуйста, помогите решить задачу по физике. Тема: "Закон сохранения импульса"
- Задача по физике 10 класс
- Физика 10 класс
- Физика 10 класс
- Физика 10 класс
- Физика 10 класс. (Шунтирование). Заранее спасибо
- ПОМОГИТЕ, ФИЗИКА, 10 класс, но там просто
- Физика 10 класс. Кинематика. Задача высокого уровня.
- Физика 10 класс. Движение тела брошенного горизонтально и под углом к горизонту. Задача высокого уровня.
0.5*m*v0^2 = m*g*x0
откуда x0 = 0.5*v0^2/g