СВ
Славутинский Виктор

Задача по физике на Закон всемирного тяготения.

Планета, имеющая форму шара, делает один оборот вокруг своей оси за T=1⋅10^5 c. Если плотность планеты ρ=0,7⋅10^3кг/м^3, то вес тела на полюсе превышает вес на экваторе на

1) 2,3%

2) 4,6%

3) 9,2%

4) 13,8%

Пожалуйста помогите решить, уже долго с ней мучаюсь)

AM
Aleksey Mantsurskiy

Вес тела на полюсе P1
P1=m*g (вниз действует сила тяжести планеты, вверх - сила реакции опоры. По третьему закону Ньютона вторая сила численно равна весу тела, поскольку есть причиной возникновения силы реакции опоры)

Вес тела на экваторе P2
P2=m*(g-a)=m*(g-v^2/R) (На экваторе тело движется с цетростремительным ускорением, направленым к центру планеты. По второму закону Ньютона сила, вызывающая это ускорение равна силе теяжести минус сила реакции опоры. Дальше аналогично как в первом случае.

Для нахождения центростремительного ускорения нужно выразить скорость для движения тела по окружности.
v=2*п*R/T
подставить в формулу для веса
P2=m*(g-(4*п^2*R)/T^2) масса при делении в дальнейшем сократиться, проблема найти g этой планеты и её радиус R.
Вспоминаем закон всемирного тяготения и записываем силу тяжести, действующую на этой планете через две разные формулы. Вторая формула справедлива для тела, которое находится на поверхности планеты.
G*M*m/R^2=g*m
маленькая масса (масса тела) сокращается
G*p*V/R^2=g
Массу большую (планеты) расписываем как произведение плотности планеты на объём, где объём выражаем как объём шара
G*p*4*п*R^3/(3*R^2)=g
Выражаем отсюда радиус планеты.
R=3*g/(4*п*G*p)
Подставляем и выносим два общих множетеля: массу тела и ускорение свободного падения на этой планете:
P2=m*g*(1- 3*п/(T^2*G*p))
Находим отношение веса тела на полюсе и веса тела на экваторе:
P1/P2=m*g/[ m*g*( 1- 3*п/(T^2*G*p) ) ] =1/[1-3*п/( T^2*G*p)]
P1/P2=1/[1-3*3,14/(10^10*6,67*10^(-11)*700) ] =1,0205=102,05%
Получили, что если вес тела на экваторе принять за 100%, то на полюсе он больше примерно на 2,1%

ОМ
Ольга Мальцева

Вес тела на полюсе P1

P1=m*g (вниз действует сила тяжести планеты, вверх - сила реакции опоры. По третьему закону Ньютона вторая сила численно равна весу тела, поскольку есть причиной возникновения силы реакции опоры)

Вес тела на экваторе P2

P2=m*(g-a)=m*(g-v^2/R) (На экваторе тело движется с цетростремительным ускорением, направленым к центру планеты. По второму закону Ньютона сила, вызывающая это ускорение равна силе теяжести минус сила реакции опоры. Дальше аналогично как в первом случае.

Для нахождения центростремительного ускорения нужно выразить скорость для движения тела по окружности.

v=2*п*R/T

подставить в формулу для веса

P2=m*(g-(4*п^2*R)/T^2) масса при делении в дальнейшем сократиться, проблема найти g этой планеты и её радиус R.

Вспоминаем закон всемирного тяготения и записываем силу тяжести, действующую на этой планете через две разные формулы. Вторая формула справедлива для тела, которое находится на поверхности планеты.

G*M*m/R^2=g*m

маленькая масса (масса тела) сокращается

G*p*V/R^2=g

Массу большую (планеты) расписываем как произведение плотности планеты на объём, где объём выражаем как объём шара

G*p*4*п*R^3/(3*R^2)=g

Выражаем отсюда радиус планеты.

R=3*g/(4*п*G*p)

Подставляем и выносим два общих множетеля: массу тела и ускорение свободного падения на этой планете:

P2=m*g*(1- 3*п/(T^2*G*p))

Находим отношение веса тела на полюсе и веса тела на экваторе:

P1/P2=m*g/[ m*g*( 1- 3*п/(T^2*G*p) ) ] =1/[1-3*п/( T^2*G*p)]

P1/P2=1/[1-3*3,14/(10^10*6,67*10^(-11)*700) ] =1,0205=102,05%

Получили, что если вес тела на экваторе принять за 100%, то на полюсе он больше примерно на 2,1%

МР
Мaрия Румянцeвa

Кто у кого срисовал, интересно.

Похожие вопросы
Физика. 9 класс. Закон всемирного тяготения.
ПРИДЕЛЫ ПРИМЕНИМОСТИ ЗАКОНА, Всемирного тяготения. физика
Применение закона всемирного тяготения. Для чего (где) применяется закон всемирного тяготения?
Закон всемирного тяготения справедлив?
Закон всемирного тяготения
помогите с физикой. что определяет закон всемирного тяготения
Физика. что определяет закон всемирного тяготения
Закон всемирного тяготения.
Закон Всемирного тяготения говорит о:
Закон всемирного тяготения Как выразить расстояние из формулы всемирного тяготения?