Функция
y = tg x, y(0) = 0, y(-1/2) ~ -0,546, y(1/2) ~ 0,546
y' = 1/cos^2 x = cos^(-2) x, y'(0) = 1/cos^2 0 = 1
y'' = -2cos^(-3) x*(-sin x) = 2sin x/cos^3 x, y''(0) = 2sin 0/cos^3 0 = 0
y''' = 2*(cos^4 x - sin x*3cos^2 x*(-sin x)) / cos^6 x =
= 2*(cos^2 x + 3sin^2 x) / cos^4 x = 2*(1 + 2sin^2 x) / cos^4 x
y'''(0) = 2*(1 + 2sin^2 0) / cos^4 0 = 2*(1 + 0)/1 = 2
y^(4) = 2*(4sin x*cos^5 x - (1 + 2sin^2 x)*4cos^3 x*(-sin x)) / cos^8 x =
= 8sin x*(cos^2 x + 1 + 2sin^2 x) / cos^5 x = 8(2sin x + sin^3 x) / cos^5 x
y^(4) (0) = 8*(2sin 0 + sin^3 0) / cos^5 0 = 0
y^(5) = 8*[(2cos x + 3sin^2 x*cos x)*cos^5 x -
- (2sin x + sin^3 x)*5cos^4 x*(-sin x)] / cos^10 x =
= 8*[2cos^2 x + 3sin^2 x*cos^2 x + 5(2sin^2 x + sin^4 x) ] / cos^6 x =
= 8*(5sin^4 x + 3sin^2 x*cos^2 x + 8sin^2 x + 2) / cos^6 x
y^(5) (0) = 8*(5*0 + 3*0*1 + 8*0 + 2) / 1 = 8*2 = 16
y^(6) (0) = 0
Ряд Маклорена строится так:
tg x = y(0) + y'(0)/1!*x + y''(0)/2!*x^2 + y'''(0)/3!*x^3 + y^(4) (0)/4!*x^4 +
+ y^(5) (0)/5!*x^5 + y^(6) (0)/6!*x^6 + .=
= 0 + 1/1*x + 0 + 2/6*x^3 + 0 + 16/120*x^5 + 0 + .=
= x + x^3/3 + 2x^5/15 + .
При |x| = 1/2 будет
tg (+-1/2) = +-(1/2 + 1/(8*3) + 2/(32*15)) = +-(1/2 + 1/24 + 1/240)
При |x| < 1/2 дроби будут еще меньше.
Поскольку 1/240 ~ 0,004, то точность 0,005 обеспечена 5 членами.