Игры без компьютера

как выглядят иррациональные числа?

Рациональные числа. Иррациональные числа.
Примеры иррациональных чисел.
Формула сложного радикала.

Иррациональные числа в отличие от рациональных (см. “Рациональные числа”) не могут быть представлены в виде обыкновенной несократимой дроби вида: m / n, где m и n – целые числа. Это числа нового типа, которые могут быть вычислены с любой точностью, но не могут быть заменены рациональным числом. Они могут появиться как результат геометрических измерений, например:

- отношение длины диагонали квадрата к длине его стороны равно ,

- отношение длины окружности к длине её диаметра равно иррациональному числу

Примеры других иррациональных чисел:

Докажем, что является иррациональным числом. Предположим противное: - рациональное число, тогда согласно определению рационального числа можно записать: = m / n, отсюда: 2 = m2 / n2, или m2 = 2 n2, то есть m2 делится на 2, следовательно, m делится на 2, откуда m = 2 k, тогда m2 = 4 k2 или 4 k2 = 2 n2, то есть n2 = 2 k2, то есть n2 делится на 2, а значит, n делится на 2, следовательно, m и n имеют общий множитель 2, что противоречит определению рационального числа (см. выше) . Таким образом, доказано, что является иррациональным числом.

При алгебраических преобразованиях иррациональных выражений и уравнений, содержащих квадратные корни, может быть полезна следующая формула сложного радикала:

(все подкоренные выражения неотрицательны) . Для доказательства этой формулы достаточно возвести в квадрат обе ее части.
Сергей Комаров
Сергей Комаров
1 057
Лучший ответ
ррациональными называются уравнения, в которых переменная содержится под знаком корня.

Иррациональное уравнение, как правило, сводится к равносильной системе, содержащей уравнения и неравенства
Из двух систем выбирают ту, которая решается проще.
Если а < 0, уравнение не имеет корней.
Если, уравнение равносильно уравнению
Иррациональные уравнения могут быть также решены путем возведения обеих частей уравнения в натуральную степень. При возведении уравнения в степень могут появится посторонние корни. Поэтому необходимой частью решения иррационального уравнения является проверка.