Домашние задания: Другие предметы
Я чего-то туплю, если упростить 3y + 2x = y + x + 1 , будет 2y = -1x + 1?
всё правильно, можно ещё 2у+х=1, х=1-2у и т. п.
Пхоже да. Я бы левую сторону тождества (1х и 1) местами поменяла.
Вроде так:))))))))))
Виета
Теорема Виета. Сумма корней приведенного квадратного трехчлена x2 + px + q = 0 равна его второму коэффициенту p с противоположным знаком, а произведение – свободному члену q, т. е. x1 + x2 = – p и x1 x2 = q
Теорема Виета замечательна тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные выражения x1 + x2 и x1 x2. Так, еще не зная, как вычислить корни уравнения x2 – x – 1 = 0, мы, тем не менее, можем сказать, что их сумма должна быть равна 1, а произведение должно равняться –1.
Теорема Виета позволяет угадывать целые корни квадратного трехчлена. Так, находя корни квадратного уравнения x2 – 5x + 6 = 0, можно начать с того, чтобы попытаться разложить свободный член (число 6) на два множителя так, чтобы их сумма равнялась бы числу 5. Это разложение очевидно: 6 = 2 × 3, 2 + 3 = 5. Отсюда должно следовать, что числа 2 и 3 являются искомыми корнями.
Обратная Теорема Виета. Если числа x1 и x2 удовлетворяют соотношениям x1 + x2 = – p и x1 x2 = q, то они удовлетворяют квадратному уравнению x2 + px + q = 0.
Теорема Виета применяется для подбора корней квадратных уравнений. Можно расширить рамки использования этой теоремы, например, для решения систем уравнений. Это сокращает время и упрощает решение системы.
Рассмотрим систему уравнений x+y=5
xy=6 Если допустить, что x и y – корни
некоторого приведенного квадратного уравнения, сумма корней которого равна 5, а их произведение равно 6, то получим совокупность двух систем x=3
y=2 и
Теорема Виета. Сумма корней приведенного квадратного трехчлена x2 + px + q = 0 равна его второму коэффициенту p с противоположным знаком, а произведение – свободному члену q, т. е. x1 + x2 = – p и x1 x2 = q
Теорема Виета замечательна тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные выражения x1 + x2 и x1 x2. Так, еще не зная, как вычислить корни уравнения x2 – x – 1 = 0, мы, тем не менее, можем сказать, что их сумма должна быть равна 1, а произведение должно равняться –1.
Теорема Виета позволяет угадывать целые корни квадратного трехчлена. Так, находя корни квадратного уравнения x2 – 5x + 6 = 0, можно начать с того, чтобы попытаться разложить свободный член (число 6) на два множителя так, чтобы их сумма равнялась бы числу 5. Это разложение очевидно: 6 = 2 × 3, 2 + 3 = 5. Отсюда должно следовать, что числа 2 и 3 являются искомыми корнями.
Обратная Теорема Виета. Если числа x1 и x2 удовлетворяют соотношениям x1 + x2 = – p и x1 x2 = q, то они удовлетворяют квадратному уравнению x2 + px + q = 0.
Теорема Виета применяется для подбора корней квадратных уравнений. Можно расширить рамки использования этой теоремы, например, для решения систем уравнений. Это сокращает время и упрощает решение системы.
Рассмотрим систему уравнений x+y=5
xy=6 Если допустить, что x и y – корни
некоторого приведенного квадратного уравнения, сумма корней которого равна 5, а их произведение равно 6, то получим совокупность двух систем x=3
y=2 и
Вика Саврасухина
А при чем здесь теорема Виета?
да
да
Похожие вопросы
- дифференциальное уравнение y'(2x-y)=x+2y
- x+5y-z=7; 2x-y-z=4 ; 3x-2y+4z=11 помогите пожалуйста решить систему, методом Крамера или Гауса
- исследование функции y=x-1/x^2-2x
- Помогите решить. Уравнение. Помогите решить (x-1)(x^2+x+1)-x(x^2-x^3)=2x^2
- Помогите пожалуйста решить функции и найти ее асимптоты. y=x/(1-x^2)^2 и y=x^2/3 e^-x ну или хотябы одну. Заранее спасибо
- помогите найти области определения y= (-arccos(1+x))/∜(x^3-1)+(2-x)*〖cos〗^2 |x|
- помогите пожалуйста построить график функции y=|{x}-1/2|
- Решить уравнение: 2(x^2 + x + 1)^2 - 7(x - 1)^2 = 13(x^3 - 1)
- |x + 1| - |3 - x| = x + 1 - |3 - 6*x| нужно решить...
- Решить неравенство: log по оснаванию 2 числа ((2^x)−1)∙ log по оснаванию 1/2 числа (2^(x+1)−2)>−2 решите пожалуйста