Положите на стол кусок картона и воткните в него две булавки в нескольких сантиметрах друг от друга. Между этими булавками воткните ещё две-три булавки так, чтобы, глядя на одну из крайних, вы увидели только её, а остальные булавки были бы закрыты от нашего взгляда ею. Выньте булавки, приложите линейку к следам в картоне от двух крайних булавок и проведите прямую. Как расположены следы от других булавок по отношению к этой прямой?
Прямолинейностью распространения света пользуются при провешивании прямых линий на поверхности земли и под землей в метро, при определении расстояний на земле, на море и в воздухе. Когда контролируют прямолинейность изделий по лучу зрения, то опять-таки используют прямолинейность распространения света.
Весьма вероятно, что и само понятие о прямой линии возникло из представления о прямолинейном распространении света.
Если между глазом и каким-нибудь источником света поместить непрозрачный предмет, то источник света мы не увидим. Объясняется это тем, что в однородной среде свет распространяется по прямым линиям.
Прямолинейное распространение света — факт, установленный ещё в глубокой древности. Об этом писал основатель геометрии Евклид (300 лет до нашей эры) . Прямолинейностью распространения света в однородной среде объясняется образование тени. Тени людей, деревьев, зданий и других предметов хорошо наблюдаются на земле в солнечный день.
Предметы, освещаемые точечными источниками света, например солнцем, отбрасывают четко очерченные тени. Карманный фонарик даёт узкий пучек света. Фактически о положении окружающих нас предметов в пространстве мы судим, подразумевая, что свет от обьекта попадает в наш глаз по прямолинейным траекториям. Наша ориентация во внешнем мире целиком основана на предположении о прямолинейном распространении света.
Именно это допущение привело к представлению о световых лучах.
Домашние задания: Другие предметы
Как доказать, что свет в однородной среде распространяется прямолинейно?
опытным путём
образование тени доказывает прямолинейное распространение света.
Доказательством этого закона является образование тени и полутени.
В домашних условиях можно выполнить несколько опытов - доказательств этого закона.
Если мы хотим, чтобы свет от лампы не попадал в глаза, мы можем поместить между лампой и глазами лист бумаги, руку или надеть на лампу абажур. Если бы свет распространялся не по прямым линиям, то он мог бы обогнуть препятствие и попасть к нам в глаза. Например от звука нельзя "загородиться" рукой, он обогнёт это препятствие и мы будем его слышать.
Таким образом, описанный пример показывает, что свет не огибает препятствие, а распространяется прямолинейно.
Теперь возьмём маленький источник света, например карманный фонарик S. Расположим на некотором расстоянии от неё экран, то есть в каждую его точку попадает свет. Если между точечным источником света S и экраном разместить непрозрачное тело, например мячик, то на экране увидим темное изображение очертаний этого тела - тёмный круг, поскольку за ним образовалась тень - пространство, куда не попадается свет от источника S. Если бы свет распространялся не прямолинейно и луч не был бы прямой линией, то тень могла бы не образоваться или имела бы другую форму и размеры.
Но чётко ограниченную тень, которая получена в описанном опыте, мы видим в жизни не всегда. Такая тень образовалась, потому что в качестве источника света мы использовали лампочку, размеры спирали которой намного меньше, чем расстояние от неё до экрана.
Если в качестве источника света взять большую, сравнительно с препятствием, лампу, размеры спирали которой сравнимы с расстоянием от неё до экрана, то вокруг тени на экране образуется еще и частично освещенное пространство - полутень.
Образование полутени не противоречит закону прямолинейного распространения света, а, наоборот, подтверждает его. Ведь в данном случае источник света нельзя считать точечным. Он состоит из множества точек и каждая из них испускает лучи. Поэтому на экране имеются области, в которые свет от одних точек источника попадает, а от других не попадает. Таким образом эти области экрана освещены лишь частично, там и образуется полутень. В центральную область экрана не попадает свет ни от одной точки лампы, там наблюдается полная тень.
Очевидно, что если наш глаз находился бы в области тени, то мы не увидели бы источник света. Из области полутени мы видели бы часть лампы. Это мы и наблюдаем при солнечном или лунном затмении.
И последний опыт. Положите на стол кусок картона и воткните в него две булавки в нескольких сантиметрах друг от друга. Между этими булавками воткните ещё две-три булавки так, чтобы, глядя на одну из крайних, вы увидели только её, а остальные булавки были бы закрыты от нашего взгляда ею. Выньте булавки, приложите линейку к следам в картоне от двух крайних булавок и проведите прямую. Как расположены следы от других булавок по отношению к этой прямой?
Прямолинейностью распространения света пользуются при провешивании прямых линий на поверхности земли и под землей в метро, при определении расстояний на земле, на море и в воздухе. Когда контролируют прямолинейность изделий по лучу зрения, то опять-таки используют прямолинейность распространения света.
Весьма вероятно, что и само понятие о прямой линии возникло из представления о прямолинейном распространении света.
В домашних условиях можно выполнить несколько опытов - доказательств этого закона.
Если мы хотим, чтобы свет от лампы не попадал в глаза, мы можем поместить между лампой и глазами лист бумаги, руку или надеть на лампу абажур. Если бы свет распространялся не по прямым линиям, то он мог бы обогнуть препятствие и попасть к нам в глаза. Например от звука нельзя "загородиться" рукой, он обогнёт это препятствие и мы будем его слышать.
Таким образом, описанный пример показывает, что свет не огибает препятствие, а распространяется прямолинейно.
Теперь возьмём маленький источник света, например карманный фонарик S. Расположим на некотором расстоянии от неё экран, то есть в каждую его точку попадает свет. Если между точечным источником света S и экраном разместить непрозрачное тело, например мячик, то на экране увидим темное изображение очертаний этого тела - тёмный круг, поскольку за ним образовалась тень - пространство, куда не попадается свет от источника S. Если бы свет распространялся не прямолинейно и луч не был бы прямой линией, то тень могла бы не образоваться или имела бы другую форму и размеры.
Но чётко ограниченную тень, которая получена в описанном опыте, мы видим в жизни не всегда. Такая тень образовалась, потому что в качестве источника света мы использовали лампочку, размеры спирали которой намного меньше, чем расстояние от неё до экрана.
Если в качестве источника света взять большую, сравнительно с препятствием, лампу, размеры спирали которой сравнимы с расстоянием от неё до экрана, то вокруг тени на экране образуется еще и частично освещенное пространство - полутень.
Образование полутени не противоречит закону прямолинейного распространения света, а, наоборот, подтверждает его. Ведь в данном случае источник света нельзя считать точечным. Он состоит из множества точек и каждая из них испускает лучи. Поэтому на экране имеются области, в которые свет от одних точек источника попадает, а от других не попадает. Таким образом эти области экрана освещены лишь частично, там и образуется полутень. В центральную область экрана не попадает свет ни от одной точки лампы, там наблюдается полная тень.
Очевидно, что если наш глаз находился бы в области тени, то мы не увидели бы источник света. Из области полутени мы видели бы часть лампы. Это мы и наблюдаем при солнечном или лунном затмении.
И последний опыт. Положите на стол кусок картона и воткните в него две булавки в нескольких сантиметрах друг от друга. Между этими булавками воткните ещё две-три булавки так, чтобы, глядя на одну из крайних, вы увидели только её, а остальные булавки были бы закрыты от нашего взгляда ею. Выньте булавки, приложите линейку к следам в картоне от двух крайних булавок и проведите прямую. Как расположены следы от других булавок по отношению к этой прямой?
Прямолинейностью распространения света пользуются при провешивании прямых линий на поверхности земли и под землей в метро, при определении расстояний на земле, на море и в воздухе. Когда контролируют прямолинейность изделий по лучу зрения, то опять-таки используют прямолинейность распространения света.
Весьма вероятно, что и само понятие о прямой линии возникло из представления о прямолинейном распространении света.
нужно у источника света поставить предмет тень покажет наглядно.
прямолинейное распространении света доказать можно ТОЛЬКО на небольшом (относительно) отрезке.
Как на самом деле ведет себя этот луч дальше, мы не знаем, так как нет опытной возможности это проверить. Мы также видим что и земля плоская, так как видим её на небольшом расстоянии, а тем кому удавалось вылететь в космос - те говорят что она шар. Так же и со светом, ни что не доказывает его прямолинейность в вечности. а также и одинаковую скорость распространения.
Он вполне может распространятся по дуге, просто на ничтожно маленьком её отрезке - это распространение кажется прямым.
Как на самом деле ведет себя этот луч дальше, мы не знаем, так как нет опытной возможности это проверить. Мы также видим что и земля плоская, так как видим её на небольшом расстоянии, а тем кому удавалось вылететь в космос - те говорят что она шар. Так же и со светом, ни что не доказывает его прямолинейность в вечности. а также и одинаковую скорость распространения.
Он вполне может распространятся по дуге, просто на ничтожно маленьком её отрезке - это распространение кажется прямым.
Похожие вопросы
- Понятие о геометрической оптике. Прямолинейное распостранение света. Законы отражения и преломления света. Показатель пр
- 1. Необходима ли среда – для передачи звука? 2. В каких cредах распространяется звук? 3. Какими волнами является звук?
- На графике приведена зависимость скорости прямолинейно движущегося тела от времени. Как определить модуль ускорения тела?
- что такое однородные обстоятельства
- составить 1 предложение с однородными определениями,и три предложения с не однородными!!!!ПОМОГИТЕ ПОЖАЙЛУСТА=)
- описание картины Всадница К. П. Брюллова с однородными. П. Брюллова с однородными
- дополните каждое предложение однородными членами, соединяя их сочинительными союзами.
- Каковы правила пунктуации при однородных членах? Каковы правила пунктуации при однородных членах?
- какие члены предложения называются однородными?как они соединяются между собой?
- 7 предложений из любых произведений с однородными членами