Живопись, графика
Сколько мерно пространство и сколько мерна плоскость???
Сегодня на контрольной по исскуству был такой вопрос. Спросила у учительницы, та начала объяснять. Но я так и не понела ...что кк чему ...
Плоскость - двумерное пространство (длина, ширина)
Можно рассмотреть так. Мы живем в трехмерном пространстве (длина, ширина, высота), но при включении понятия ВРЕМЯ пространство рассматриваемое нами становится четырехмерным.
Можно рассмотреть так. Мы живем в трехмерном пространстве (длина, ширина, высота), но при включении понятия ВРЕМЯ пространство рассматриваемое нами становится четырехмерным.
3 и 2
трех, двух
Трёхме́рное простра́нство — геометрическая модель материального мира, в котором мы находимся. Это пространство называется трёхмерным, так оно имеет три измерения — высоту, ширину и длину, то есть трёхмерное пространство описывается тремя единичными ортогональными векторами.
Понимание трехмерного пространства людьми, как считается, развивается ещё в младенчестве, и тесно связано с координацией движений человека. Визуальная способность воспринимать окружающий мир органами чувств в трёх измерениях называется глубиной восприятия.
В аналитической геометрии каждая точка трехмерного пространства описывается как набор из трех величин (координат) . Задаются три взаимноперпендикулярных координатных оси, пересекающихся в начале координат. Положение точки задается относительно этих трех осей заданием упорядоченой тройки чисел. Каждое из этих чисел задает расстояние от начала отсчёта до точки, измеренное вдоль соответствующей оси, что равно расстоянию от точки до плоскости, образованной другими двумя осями.
Также существуют другие системы координат, наиболее часто используются цилиндрическая и сферическая системы.
Другой взгляд дает линейная алгебра, где важную роль играет понятие линейной независимости. Пространство трехмерно по той причине, что высота коробки не зависит от её длины и ширины. На языке линейной алгебры пространство трехмерно потому что каждая точка может быть задана комбинацией из трех линейно независимых векторов. В этих терминах пространство-время четырёхмерно потому что положение точки во времени не зависит от её положения в пространстве.
Трехмерное пространство имеет несколько свойств, которые отличают его от пространств другой размерности. Например, это пространство наименьшей размерности, в котором можно завязать узел на куске веревки [1]. Многие законы физики, например многие законы обратных квадратов связаны с тем что размерность нашего пространства три Нульмерное, одномерное и двухмерное пространства могут рассматриваться как располагающиеся в трёхмерном пространстве; само оно может считаться частью модели четырёхмерного пространства (четвёртым измерением континуума, как правило, называют время) .
ДВУМЕРНОЕ: Проекти́вное простра́нство над телом K — пространство состоящее из прямых (одномерных подпространств) некоторого линейного пространства L(K) над данным телом. Данные прямые называются точками проективного пространства.
Если L имеет размерность n + 1, то размерностью проективного пространства называется число n а само проективное пространство обозначается KPn и называется ассоциированным с L (чтобы это указать, принято обозначение P(L)).
Точки KPn можно описывать с помощью однородных координат.
Проективное пространство может быть также определено системой аксиом типа гильбертовской, что наиболее интересно в случае проективной плоскости. Тогда оказывается, что проективная плоскость, определённая аксиомами, может быть определена как двухмерное проективное пространство над некоторым телом тогда и только тогда, когда выполняется т. н. аксиома Дезарга, которая для размерностей больших 2 является теоремой.
А вот интересно нашла куб в четырёхмерном пространстве как выглядит: http://upload.wikimedia.org/wikipedia/commons/d/d7/8-cell.gif, а его проекция в трёхмерном пространстве выглядит так: http://upload.wikimedia.org/wikipedia/commons/thumb/6/69/Hypercubecentral.svg/311px-Hypercubecentral.svg.png (Это как проекция куба в двухмерном пространстве будет квадрат, в одномерном - прямая)
Понимание трехмерного пространства людьми, как считается, развивается ещё в младенчестве, и тесно связано с координацией движений человека. Визуальная способность воспринимать окружающий мир органами чувств в трёх измерениях называется глубиной восприятия.
В аналитической геометрии каждая точка трехмерного пространства описывается как набор из трех величин (координат) . Задаются три взаимноперпендикулярных координатных оси, пересекающихся в начале координат. Положение точки задается относительно этих трех осей заданием упорядоченой тройки чисел. Каждое из этих чисел задает расстояние от начала отсчёта до точки, измеренное вдоль соответствующей оси, что равно расстоянию от точки до плоскости, образованной другими двумя осями.
Также существуют другие системы координат, наиболее часто используются цилиндрическая и сферическая системы.
Другой взгляд дает линейная алгебра, где важную роль играет понятие линейной независимости. Пространство трехмерно по той причине, что высота коробки не зависит от её длины и ширины. На языке линейной алгебры пространство трехмерно потому что каждая точка может быть задана комбинацией из трех линейно независимых векторов. В этих терминах пространство-время четырёхмерно потому что положение точки во времени не зависит от её положения в пространстве.
Трехмерное пространство имеет несколько свойств, которые отличают его от пространств другой размерности. Например, это пространство наименьшей размерности, в котором можно завязать узел на куске веревки [1]. Многие законы физики, например многие законы обратных квадратов связаны с тем что размерность нашего пространства три Нульмерное, одномерное и двухмерное пространства могут рассматриваться как располагающиеся в трёхмерном пространстве; само оно может считаться частью модели четырёхмерного пространства (четвёртым измерением континуума, как правило, называют время) .
ДВУМЕРНОЕ: Проекти́вное простра́нство над телом K — пространство состоящее из прямых (одномерных подпространств) некоторого линейного пространства L(K) над данным телом. Данные прямые называются точками проективного пространства.
Если L имеет размерность n + 1, то размерностью проективного пространства называется число n а само проективное пространство обозначается KPn и называется ассоциированным с L (чтобы это указать, принято обозначение P(L)).
Точки KPn можно описывать с помощью однородных координат.
Проективное пространство может быть также определено системой аксиом типа гильбертовской, что наиболее интересно в случае проективной плоскости. Тогда оказывается, что проективная плоскость, определённая аксиомами, может быть определена как двухмерное проективное пространство над некоторым телом тогда и только тогда, когда выполняется т. н. аксиома Дезарга, которая для размерностей больших 2 является теоремой.
А вот интересно нашла куб в четырёхмерном пространстве как выглядит: http://upload.wikimedia.org/wikipedia/commons/d/d7/8-cell.gif, а его проекция в трёхмерном пространстве выглядит так: http://upload.wikimedia.org/wikipedia/commons/thumb/6/69/Hypercubecentral.svg/311px-Hypercubecentral.svg.png (Это как проекция куба в двухмерном пространстве будет квадрат, в одномерном - прямая)
Похожие вопросы
- Как стать художником? Сколько стоит обучение и сколько примерно можно заработать?
- Живопись изображает трехмерное пространство на плоскости, движение--на неподвижном холсте. Как (ВН)
- Есть мерные иконы.Почему они называются мерными?
- Что различного в изображении пространства в искусстве Средневековья, Ренессанса, Барокко?
- Какой художник любил "баловаться" с логикой пространства ?
- Каким способом добиться пространства в рисунке?
- Вопрос художникам и тем кто продаёт свои работы, сколько бы вы купили эти рисунки
- Пожалуйста скажите за сколько это можно продать?
- Мне предложили продавать свои рисунки. Вот несколько моих работ: Подскажите пожалуйста за сколько
- А сколько может стоить моё творчество?