Школы
Доказательство теоремы Пифагора!!
2+2=5
Ура! Неужели вам это удалось?
Википедия:
Доказательства
На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы [9]. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.
Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например, с помощью дифференциальных уравнений).
Через подобные треугольники
Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры.
Podobnye treugolniki proof.png
Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим её основание через H. Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC. Введя обозначения
|BC|=a, |AC|=b, |AB|=c
получаем
\frac{a}{c}=\frac{|HB|}{a}; \frac{b}{c}=\frac{|AH|}{b}.
Что эквивалентно
a^2=c\cdot |HB|; b^2=c\cdot |AH|.
Сложив, получаем
a^2+b^2=c\cdot\left(|HB|+|AH|\right)=c^2.
или
a^2+b^2=c^2, что и требовалось доказать
Доказательства методом площадей
Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.
Доказательство через равнодополняемость
Рис. 1
Расположим четыре равных прямоугольных треугольника так, как показано на рисунке 1.
Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол — 180°.
Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и площади внутреннего квадрата.
(a+b)^2=4\cdot\frac{ab}{2}+c^2;
a^2+2ab+b^2=2ab+c^2;\frac{}{}
c^2=a^2+b^2;\frac{}{}
Что и требовалось доказать.
Доказательство Евклида
Чертеж к доказательству Евклида
Иллюстрация к доказательству Евклида
Идея доказательства Евклида состоит в следующем: попробуем доказать, что половина площади квадрата, построенного на гипотенузе, равна сумме половин площадей квадратов, построенных на катетах, а тогда и площади большого и двух малых квадратов равны.
Рассмотрим чертеж слева. На нём мы построили квадраты на сторонах прямоугольного треугольника и провели из вершины прямого угла С луч s перпендикулярно гипотенузе AB, он рассекает квадрат ABIK, построенный на гипотенузе, на два прямоугольника — BHJI и HAKJ соответственно. Оказывается, что площади данных прямоугольников в точности равны площадям квадратов, построенных на соответствующих катетах.
Попытаемся доказать, что площадь квадрата DECA равна площади прямоугольника AHJK. Для этого воспользуемся вспомогательным наблюдением: Площадь треугольника с той же высотой и основанием, что и данный прямоугольник, равна половине площади заданного прямоугольника. Это следствие определения площади треугольника как половины произведения основания на высоту. Из этого наблюдения вытекает, что площадь треугольника ACK равна площади треугольника AHK (не изображённого на рисунке), которая, в свою очередь, равна половине площади прямоугольника AHJK.
Докажем теперь, что площадь треугольника ACK также равна половине площади квадрата DECA. Единственное, что необходимо для этого сделать, — это доказать равенство треугольников ACK и BDA (так как площадь треугольника BDA равна половине площади квадрата по указанному выше свойству). Равенство это очевидно: треугольники равны по двум сторонам и углу между ними. Именно — AB=AK, AD=AC — равенство углов CAK и BAD легко доказать методом движения: повернём треугольник CAK на 90° против часовой стрелки,
Доказательства
На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы [9]. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.
Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например, с помощью дифференциальных уравнений).
Через подобные треугольники
Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры.
Podobnye treugolniki proof.png
Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим её основание через H. Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC. Введя обозначения
|BC|=a, |AC|=b, |AB|=c
получаем
\frac{a}{c}=\frac{|HB|}{a}; \frac{b}{c}=\frac{|AH|}{b}.
Что эквивалентно
a^2=c\cdot |HB|; b^2=c\cdot |AH|.
Сложив, получаем
a^2+b^2=c\cdot\left(|HB|+|AH|\right)=c^2.
или
a^2+b^2=c^2, что и требовалось доказать
Доказательства методом площадей
Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.
Доказательство через равнодополняемость
Рис. 1
Расположим четыре равных прямоугольных треугольника так, как показано на рисунке 1.
Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол — 180°.
Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и площади внутреннего квадрата.
(a+b)^2=4\cdot\frac{ab}{2}+c^2;
a^2+2ab+b^2=2ab+c^2;\frac{}{}
c^2=a^2+b^2;\frac{}{}
Что и требовалось доказать.
Доказательство Евклида
Чертеж к доказательству Евклида
Иллюстрация к доказательству Евклида
Идея доказательства Евклида состоит в следующем: попробуем доказать, что половина площади квадрата, построенного на гипотенузе, равна сумме половин площадей квадратов, построенных на катетах, а тогда и площади большого и двух малых квадратов равны.
Рассмотрим чертеж слева. На нём мы построили квадраты на сторонах прямоугольного треугольника и провели из вершины прямого угла С луч s перпендикулярно гипотенузе AB, он рассекает квадрат ABIK, построенный на гипотенузе, на два прямоугольника — BHJI и HAKJ соответственно. Оказывается, что площади данных прямоугольников в точности равны площадям квадратов, построенных на соответствующих катетах.
Попытаемся доказать, что площадь квадрата DECA равна площади прямоугольника AHJK. Для этого воспользуемся вспомогательным наблюдением: Площадь треугольника с той же высотой и основанием, что и данный прямоугольник, равна половине площади заданного прямоугольника. Это следствие определения площади треугольника как половины произведения основания на высоту. Из этого наблюдения вытекает, что площадь треугольника ACK равна площади треугольника AHK (не изображённого на рисунке), которая, в свою очередь, равна половине площади прямоугольника AHJK.
Докажем теперь, что площадь треугольника ACK также равна половине площади квадрата DECA. Единственное, что необходимо для этого сделать, — это доказать равенство треугольников ACK и BDA (так как площадь треугольника BDA равна половине площади квадрата по указанному выше свойству). Равенство это очевидно: треугольники равны по двум сторонам и углу между ними. Именно — AB=AK, AD=AC — равенство углов CAK и BAD легко доказать методом движения: повернём треугольник CAK на 90° против часовой стрелки,
Доказательства теоремы Пифагора.
На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема
Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие
можно объяснить лишь фундаментальным значением теоремы для геометрии.
Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них:
доказательства методом площадей, аксиоматические и экзотические доказательства (например,
с помощью дифференциальных уравнений).
1. Доказательство теоремы Пифагора через подобные треугольники.
Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся
напрямую из аксиом. В частности, оно не использует понятие площади фигуры.
Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим
её основание через H.
Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC.
Введя обозначения:
Теорема Пифагора. Теорема Пифагора.
получаем:
Теорема Пифагора. ,
что соответствует - Теорема Пифагора.
Сложив a2 и b2, получаем: Теорема Пифагора.
или Теорема Пифагора., что и требовалось доказать.
На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема
Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие
можно объяснить лишь фундаментальным значением теоремы для геометрии.
Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них:
доказательства методом площадей, аксиоматические и экзотические доказательства (например,
с помощью дифференциальных уравнений).
1. Доказательство теоремы Пифагора через подобные треугольники.
Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся
напрямую из аксиом. В частности, оно не использует понятие площади фигуры.
Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим
её основание через H.
Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC.
Введя обозначения:
Теорема Пифагора. Теорема Пифагора.
получаем:
Теорема Пифагора. ,
что соответствует - Теорема Пифагора.
Сложив a2 и b2, получаем: Теорема Пифагора.
или Теорема Пифагора., что и требовалось доказать.
Похожие вопросы
- Все способы доказательства теоремы Пифагора
- что такое теорема и что такое доказательство теоремы. что такое теорема и что такое доказательство теоремы
- геометрия!! доказательство теоремы!!! помогите!!
- Теорема Пифагора: как она звучит?
- Скажите как возникла теорема Пифагора
- Нужно доказательство теоремы: о сумме внешних углов n-угольника
- 1. Теоремы об углах, образованных двумя параллельными прямыми и секущей (доказательство любого из трёх). ЭКЗАМЕН!!!!
- Теорема об описанной окружности вокруг правильного многоугольника
- какая теорема называется обратной данной теореме? приведите примеры теорем, обратных данным
- Зачем в школах на предмете Геометрия постоянно доказывают всякие теоремы?