ВУЗы и колледжи

Приведите примеры выборочной совокупности Пожалуйста такие что б было все понятно

§ 3. Расчет выборочной совокупности

Каждый исследователь, желающий получить достоверные дан­ные о генеральной совокупности изучаемых явлений и процес­сов, стоит перед проблемой определения объема выборочной совокупности (я). Он определяется исходя из заданных и налич­ных показателей. Заданными показателями в этом случае будут предельная ошибка репрезентативности (W или А), коэффици­ент доверия (0, а наличными — дисперсия (о) изучаемых при­знаков и (в некоторых случаях) численность генеральной сово­купности (W).

Формулы расчета выборочной совокупности выводятся из фор­мул расчета ошибок репрезентативности.

р ( — р) Из формулы W = J-i-----'-, по которой рассчитывается ошибка

повторной выборки качественного признака при коэффициенте доверия /= 1, может быть легко вычислен объем выборки. Для

131

этого необходимо знать значение удельного веса признака и за­дать предельную ошибку выборки. Обратимся к известному при­меру. Доля лиц, совершивших преступления в состоянии опьяне­ния (Р), составляла 35%, или 0,35. Предельную ошибку (W) за­дадим равной ± 5%, или 0,05. В этом случае

^ Р ( - Р) = 0,35(1 W

• 0,35)

0,0025

= 91 преступление (дело, статкарта, приговор).

Если задать ошибку, равной ± 4%, то следует изучить 143 еди­ницы, ± 3% - 225, ±296- 575 и т. д.

Из формулы W = J— , по которой

I П

определяется однократная

ошибка повторной выборки количественного признака, объем выборочной совокупности можно рассчитать после нахождения дисперсии (о) и необходимой предельной ошибки выборки (W). Вновь обратимся к примеру о сроках лишения свободы. В нем а = = 2,29 года, W= ± 0,15 года. Найдем объем выборочной совокуп­ности (/?):

2,29 0,0225

= 102 единицы.

Это означает, что если нас удовлетворяет ошибка выборки, равная ±0,15, то следует изучить 100 преступлений (дел, статкарт и т. д.), а если она допустима в пределах ± 0,3, то достаточ­но 25 единиц изучения.

Выше говорилось, что коэффициент доверия, равный 1 (/=1), недостаточно надежен, так как только 683 единицы из 1000 могут быть в пределах заданной ошибки репрезентативно­сти. Поэтому чаще всего при расчете объема выборочной сово­купности вводится коэффициент доверия, равный 2 (/=2), ко­торый означает, что в 954 случаях из 1000 число единиц выбо­рочной совокупности будет находиться в пределах заданной ошибки репрезентативности. С этой целью в приведенные фор­мулы, как и при расчете ошибки репрезентативности, вводит­ся коэффициент /.

Из формул предельных ошибок повторной выборки для каче­ственных и количественных признаков выведем формулы расчета объемов выборочной совокупности.

Из д

следует и =

(качественные признаки).

Из д = /J— следует п = -~- (количественные признаки).

V и А

Принимая / = 2 и используя данные предыдущих примеров, определяем объемы выборочных совокупностей для качествен­ных и количественных признаков:

, ч 0,35(1-0,35) 4 "*"

п (кач.) =-----^ пппг, '— -- 364 преступления;

и (колич.) =

2,29 4

= 407 преступлений.

0,0225

Расчеты выборочных совокупностей показывают, что если по­высить коэффициент доверия вдвое (/=2), то объем выборки не­обходимо увеличить вчетверо, ^то означает, что в пределах тех же ошибок репрезентативности ± 5% и ± 0,15 года теперь будет на­ходиться не 683, а 954 единицы из 1000. В этих случаях ошибка выборки именуется двукратной, поскольку распространяется на все единицы выборочной совокупности, расположенные в пре­делах 28 нормального распределения.

Все предшествующие расчеты производились для повторной выборки. В реальной жизни криминологические и социально-пра­вовые изучения проводятся, как правило, бесповторным спосо­бом, т. е. уголовное дело, статкарта, гражданское дело и т. д. по какому-то признаку изуч
СМ
Света Мордовина
187
Лучший ответ