а не закрепляется один аллель, дающий преимущество в борьбе за существование?
ПОМОГИТЕ ПОЖАЛУЙСТА ОТВЕТИТЬ!!!
Дикая природа
HELP(((Почему в природных популяциях встречается более чем один аллель одного и того же гена,
Конечным результатом дрейфа генов является полное устранение одного аллеля из популяции и закрепление (фиксация) в ней другого аллеля. Чем чаще тот или иной аллель встречается в популяции, тем выше вероятность его фиксации вследствие дрейфа генов. Вероятность фиксации нейтрального аллеля равна его частоте в популяции.
Под дрейфом генов понимают случайные изменения генных частот, вызванные конечной численностью популяции. Чтобы понять, как возникает генный дрейф, рассмотрим вначале популяцию минимально возможной численности N = 2: один самец и одна самка. Пусть в исходном поколении самка имеет генотип A1A2, а самец – A3A4. Таким образом, в начальном (нулевом) поколении частоты аллелей A1, A2, A3 и A4 равны 0,25 каждая. Особи следующего поколения могут равновероятно иметь один из следующих генотипов: A1A3, A1A4, A2A3 и A2A4. Допустим, что самка будет иметь генотип A1A3, а самец – A2A3. Тогда в первом поколении аллель A4 теряется, аллели A1 и A2 сохраняют те же частоты, что и в исходном поколении – 0,25 и 0,25, а аллель A3 увеличивает частоту до 0,5. Во втором поколении самка и самец тоже могут иметь любые комбинации родительских аллелей, например A1A2 и A1A2. В этом случае окажется, что аллель A3, несмотря на большую частоту, исчез из популяции, а аллели A1 и A2 увеличили свою частоту (p1 = 0,5, p2 = 0,5). Колебания их частот в конце концов приведут к тому, что в популяции останется либо аллель A1, либо аллель A2; иными словами и самец и самка будут гомозиготны по одному и тому же аллелю: A1 или A2. Ситуация могла сложиться и так, что в популяции остался бы аллель A3 или A4, но в рассмотренном случае этого не произошло.
Описанный процесс дрейфа генов имеет место в любой популяции конечной численности, с той лишь разницей, что события развиваются с гораздо меньшей скоростью, чем при численности в две особи. Генный дрейф имеет два важных последствия. Во-первых, каждая популяция теряет генетическую изменчивость со скоростью, обратно пропорциональной ее численности. Со временем какие-то аллели становятся редкими, а затем и вовсе исчезают. В конце концов, в популяции остается один-единственный аллель из имевшихся, какой именно – это дело случая. Во-вторых, если популяция разделяется на две или большее число новых независимых популяций, то дрейф генов ведет к нарастанию различий между ними: в одних популяциях остаются одни аллели, а в других – другие. Процессы, которые противодействуют потере изменчивости и генетическому расхождению популяций, – это мутации и миграции.
При исследовании генетической динамики популяций, в качестве теоретической, «нулевой» точки отсчета принимают популяцию со случайным скрещиванием, имеющую бесконечную численность и изолированную от притока мигрантов; полагают также, что темпы мутирования генов пренебрежимо малы и отбор отсутствует. Математически доказывается, что в такой популяции частоты аллелей аутосомного гена одинаковы для самок и самцов и не меняются из поколения в поколение, а частоты гомо- и гетерозигот выражаются через частоты аллелей следующим образом:
Pii = pi2, Pij = 2pi pj.
Это называется соотношениями, или законом, Харди – Вайнберга – по имени английского математика Г. Харди и немецкого медика и статистика В. Вайнберга, одновременно и независимо открывших их: первый – теоретически, второй – из данных по наследованию признаков у человека.
Реальные популяции могут значительно отличаться от идеальной, описываемой уравнениями Харди – Вайнберга. Поэтому наблюдаемые частоты генотипов отклоняются от теоретических величин, вычисляемых по соотношениям Харди – Вайнберга. Так, в рассмотренном выше примере теоретические частоты генотипов отличаются от наблюдаемых и составляют
P11 = 0,0506, P22 = 0,0900, P33 = 0,2256,
P12 = 0,1350, P13 = 0,2138, P23 = 0,2850.
Подобные отклонения можно частично объяснить т. н. ошибкой выборки; ведь в действительности в эксперименте изучают не всю популяцию, а лишь отдельных особей, т. е. выборку. (и вот сдесь дреф генов)
Под дрейфом генов понимают случайные изменения генных частот, вызванные конечной численностью популяции. Чтобы понять, как возникает генный дрейф, рассмотрим вначале популяцию минимально возможной численности N = 2: один самец и одна самка. Пусть в исходном поколении самка имеет генотип A1A2, а самец – A3A4. Таким образом, в начальном (нулевом) поколении частоты аллелей A1, A2, A3 и A4 равны 0,25 каждая. Особи следующего поколения могут равновероятно иметь один из следующих генотипов: A1A3, A1A4, A2A3 и A2A4. Допустим, что самка будет иметь генотип A1A3, а самец – A2A3. Тогда в первом поколении аллель A4 теряется, аллели A1 и A2 сохраняют те же частоты, что и в исходном поколении – 0,25 и 0,25, а аллель A3 увеличивает частоту до 0,5. Во втором поколении самка и самец тоже могут иметь любые комбинации родительских аллелей, например A1A2 и A1A2. В этом случае окажется, что аллель A3, несмотря на большую частоту, исчез из популяции, а аллели A1 и A2 увеличили свою частоту (p1 = 0,5, p2 = 0,5). Колебания их частот в конце концов приведут к тому, что в популяции останется либо аллель A1, либо аллель A2; иными словами и самец и самка будут гомозиготны по одному и тому же аллелю: A1 или A2. Ситуация могла сложиться и так, что в популяции остался бы аллель A3 или A4, но в рассмотренном случае этого не произошло.
Описанный процесс дрейфа генов имеет место в любой популяции конечной численности, с той лишь разницей, что события развиваются с гораздо меньшей скоростью, чем при численности в две особи. Генный дрейф имеет два важных последствия. Во-первых, каждая популяция теряет генетическую изменчивость со скоростью, обратно пропорциональной ее численности. Со временем какие-то аллели становятся редкими, а затем и вовсе исчезают. В конце концов, в популяции остается один-единственный аллель из имевшихся, какой именно – это дело случая. Во-вторых, если популяция разделяется на две или большее число новых независимых популяций, то дрейф генов ведет к нарастанию различий между ними: в одних популяциях остаются одни аллели, а в других – другие. Процессы, которые противодействуют потере изменчивости и генетическому расхождению популяций, – это мутации и миграции.
При исследовании генетической динамики популяций, в качестве теоретической, «нулевой» точки отсчета принимают популяцию со случайным скрещиванием, имеющую бесконечную численность и изолированную от притока мигрантов; полагают также, что темпы мутирования генов пренебрежимо малы и отбор отсутствует. Математически доказывается, что в такой популяции частоты аллелей аутосомного гена одинаковы для самок и самцов и не меняются из поколения в поколение, а частоты гомо- и гетерозигот выражаются через частоты аллелей следующим образом:
Pii = pi2, Pij = 2pi pj.
Это называется соотношениями, или законом, Харди – Вайнберга – по имени английского математика Г. Харди и немецкого медика и статистика В. Вайнберга, одновременно и независимо открывших их: первый – теоретически, второй – из данных по наследованию признаков у человека.
Реальные популяции могут значительно отличаться от идеальной, описываемой уравнениями Харди – Вайнберга. Поэтому наблюдаемые частоты генотипов отклоняются от теоретических величин, вычисляемых по соотношениям Харди – Вайнберга. Так, в рассмотренном выше примере теоретические частоты генотипов отличаются от наблюдаемых и составляют
P11 = 0,0506, P22 = 0,0900, P33 = 0,2256,
P12 = 0,1350, P13 = 0,2138, P23 = 0,2850.
Подобные отклонения можно частично объяснить т. н. ошибкой выборки; ведь в действительности в эксперименте изучают не всю популяцию, а лишь отдельных особей, т. е. выборку. (и вот сдесь дреф генов)
Эта инфа подойдёт?
Дрейф генов как фактор эволюции
Мы можем рассматривать дрейф генов как один из факторов эволюции популяций. Благодаря дрейфу частоты аллелей могут случайно меняться в локальных популяциях, пока они не достигнут точки равновесия – утери одного аллеля и фиксации другого. В разных популяциях гены «дрейфуют» независимо. Поэтому результаты дрейфа оказываются разными в разных популяциях – в одних фиксируется один набор аллелей, в других – другой. Таким образом, дрейф генов ведет с одной стороны к уменьшению генетического разнообразия внутри популяций, а с другой стороны - к увеличению различий между популяциями, к их дивергенции по ряду признаков. Эта дивергенция в свою очередь может служить основой для видообразования.
В ходе эволюции популяций дрейф генов взаимодействует с другими факторами эволюции, прежде всего с естественным отбором. Соотношение вкладов этих двух факторов зависит как от интенсивности отбора, так и от численности популяций. При высокой интенсивности отбора и высокой численности популяций влияние случайных процессов на динамику частот генов в популяциях становится пренебрежимо малым. Наоборот, в малых популяциях при небольших различиях по приспособленности между генотипами дрейф генов приобретает решающее значение. В таких ситуациях менее адаптивный аллель может зафиксироваться в популяции, а более адаптивный может быть утрачен.
Как мы уже знаем, наиболее частым последствием дрейфа генов является обеднение генетического разнообразия внутри популяций за счет фиксации одних аллелей и утраты других. Мутационный процесс, напротив, приводит к обогащению генетического разнообразия внутри популяций. Аллель, утраченный в результате дрейфа, может возникать вновь и вновь за счет мутирования.
Поскольку дрейф генов – ненаправленный процесс, то одновременно с уменьшением разнообразия внутри популяций, он увеличивает различия между локальными популяциями. Этому противодействует миграция. Если в одной популяции зафиксирован аллель А, а в другой а, то миграция особей между этими популяциями приводит к тому, что внутри обеих популяций вновь возникает аллельное разнообразие.
Дрейф генов как фактор эволюции
Мы можем рассматривать дрейф генов как один из факторов эволюции популяций. Благодаря дрейфу частоты аллелей могут случайно меняться в локальных популяциях, пока они не достигнут точки равновесия – утери одного аллеля и фиксации другого. В разных популяциях гены «дрейфуют» независимо. Поэтому результаты дрейфа оказываются разными в разных популяциях – в одних фиксируется один набор аллелей, в других – другой. Таким образом, дрейф генов ведет с одной стороны к уменьшению генетического разнообразия внутри популяций, а с другой стороны - к увеличению различий между популяциями, к их дивергенции по ряду признаков. Эта дивергенция в свою очередь может служить основой для видообразования.
В ходе эволюции популяций дрейф генов взаимодействует с другими факторами эволюции, прежде всего с естественным отбором. Соотношение вкладов этих двух факторов зависит как от интенсивности отбора, так и от численности популяций. При высокой интенсивности отбора и высокой численности популяций влияние случайных процессов на динамику частот генов в популяциях становится пренебрежимо малым. Наоборот, в малых популяциях при небольших различиях по приспособленности между генотипами дрейф генов приобретает решающее значение. В таких ситуациях менее адаптивный аллель может зафиксироваться в популяции, а более адаптивный может быть утрачен.
Как мы уже знаем, наиболее частым последствием дрейфа генов является обеднение генетического разнообразия внутри популяций за счет фиксации одних аллелей и утраты других. Мутационный процесс, напротив, приводит к обогащению генетического разнообразия внутри популяций. Аллель, утраченный в результате дрейфа, может возникать вновь и вновь за счет мутирования.
Поскольку дрейф генов – ненаправленный процесс, то одновременно с уменьшением разнообразия внутри популяций, он увеличивает различия между локальными популяциями. Этому противодействует миграция. Если в одной популяции зафиксирован аллель А, а в другой а, то миграция особей между этими популяциями приводит к тому, что внутри обеих популяций вновь возникает аллельное разнообразие.
Похожие вопросы
- Почему в природе не встречаются длинные пищевые цепи?
- Почему контролировать популяцию волков путем отстрела можно, а популяцию диких собак нет?
- Учитель биологии задал вопрос. Мыши могут возродить всю вою популяцию всего из 10 особей, людям же потребуется 3-4 тыс.
- Биотические факторы. Взфимосвязи популяций в биогеоценозе.
- От чего зависит плотность популяции лося?
- Это уже не смешно. У нас в парке у дома пенсионерки и мамы с детьми раскормили популяцию уток и голубей до немыслимых
- А какие природные барометры вы знаете?
- Почему именно в России такие большие популяции кровесосущих паразитов?
- Почему снижается популяция зайца?
- Почему популяция саранчи может резко увеличивать свою численность и мигрировать огромными стаями?