При́знак Паска́ля — метод, позволяющий получить признаки делимости на любое число. Своего рода «универсальный признак делимости» .
При́знак дели́мости — алгоритм, позволяющий сравнительно быстро определить, является ли число кратным заранее заданному. Если признак делимости позволяет выяснить не только делимость числа на заранее заданное, но и остаток от деления, то его называют признаком равноостаточности.
Как правило, признаки делимости применяются при ручном счёте и для чисел, представленных в конкретной позиционной системе счисления (обычно десятичной) .
Признаки делимости
Признак делимости — это правило, позволяющее быстро определить, является ли число кратным заранее заданному числу, без необходимости выполнять деление. Рассмотрим несколько основных признаков деления:
Признак делимости на 2
Число делится на 2 тогда и только тогда, когда его последняя цифра делится на 2, то есть является чётной.
Признак делимости на 3
Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.
Признак делимости на 4
Число делится на 4 тогда и только тогда, когда число из двух последних его цифр нули или делится на 4.
Признак делимости на 5
Число делится на 5 тогда и только тогда, когда последняя цифра делится на 5 (то есть равна 0 или 5).
Признак делимости на 6
Число делится на 6 тогда и только тогда, когда оно делится на 2 и на 3.
Признак делимости на 7
Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (например, 259 делится на 7, так как 25 — (2 · 9) = 7 делится на 7).
Признак делимости на 8
Число делится на 8 тогда и только тогда, когда три его последние цифры делятся на 8.
Чтобы узнать, делится ли трёхзначное число на 8, можно половину единиц прибавить к десяткам. У получившегося числа также половину единиц прибавить к десяткам. Если сумма делится на 2, значит, число делится на 8. Например, 952: 95 + 1 = 96, далее 9 + 3 = 12. Значит, 952 делится на 8.
Признак делимости на 9
Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9 без остатка .
Признак делимости на 10
Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.
Признак делимости на 11
На 11 делятся только те числа, у которых сумма цифр, занимающих нечётные места, либо равна сумме цифр, занимающих чётные места, либо отличается от неё на число, делящееся на 11.
Примеры. Число 103785 делится на 11, так как сумма цифр, занимающих нечётные места, 1+3+8=12 равна сумме цифр, занимающих чётные места 0+7+5=12. Число 9 163 627 делится на 11, так как сумма цифр, занимающих нёчетные места, есть 9 + 6 + 6 + 7 = 28, а сумма цифр, занимающих чётные места, есть 1 + 3 +2 =6; разность между числами 28 и 6 есть 22, а это число делится на 11. Число 461025 не делится на 11, так как числа 4+ 1 + 2 = 7 и 6 +0 + 5=11 не равны друг другу, а их разность 11 —7 = 4 на 11 не делится.
Еще один признак: отнимайте единицы от десятков. Если результат делится на 11, то и само число тоже.
Примеры. 103785 10378-5=10373 1037-3=1034 103-4=99 9-9=0
Признак делимости на 12
Число делится на 12 тогда и только тогда, когда оно делится и на 3 и на 4.
Признак делимости на 13
Число делится на 13 тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно 13 (например, 845 делится на 13, так как 84 + (4 × 5) = 104, далее 10 + (4 × 4) = 26 делится на 13).
Признак делимости на 14
Число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7.
Признак делимости на 15
Число делится на 15 тогда и только тогда, когда оно делится на 3 и на 5.
Признак делимости на 17
Число делится на 17 тогда и только тогда, когда число его десятков, сложенное с увеличенным в 12 раз числом единиц, кратно 17 (например, 29053→2905+36=2941→294+12=306→30+72=102→10+24=34.
Дополнительное образование
Кто впервые обнаружил признаки делимости?
Адам, когда у него ребро удалили))))
Признак делимости — это правило, позволяющее быстро определить, является ли число кратным заранее заданному числу, без необходимости выполнять деление. Рассмотрим несколько основных признаков деления:
Признак делимости на 2
Число делится на 2 тогда и только тогда, когда его последняя цифра делится на 2, то есть является чётной.
Признак делимости на 3
Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.
Признак делимости на 4
Число делится на 4 тогда и только тогда, когда число из двух последних его цифр нули или делится на 4.
Признак делимости на 5
Число делится на 5 тогда и только тогда, когда последняя цифра делится на 5 (то есть равна 0 или 5).
Признак делимости на 6
Число делится на 6 тогда и только тогда, когда оно делится на 2 и на 3.
Признак делимости на 7
Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (например, 259 делится на 7, так как 25 — (2 · 9) = 7 делится на 7).
Признак делимости на 8
Число делится на 8 тогда и только тогда, когда три его последние цифры делятся на 8.
Чтобы узнать, делится ли трёхзначное число на 8, можно половину единиц прибавить к десяткам. У получившегося числа также половину единиц прибавить к десяткам. Если сумма делится на 2, значит, число делится на 8. Например, 952: 95 + 1 = 96, далее 9 + 3 = 12. Значит, 952 делится на 8.
Признак делимости на 9
Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9 без остатка .
Признак делимости на 10
Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.
Признак делимости на 11
На 11 делятся только те числа, у которых сумма цифр, занимающих нечётные места, либо равна сумме цифр, занимающих чётные места, либо отличается от неё на число, делящееся на 11.
Признак делимости на 2
Число делится на 2 тогда и только тогда, когда его последняя цифра делится на 2, то есть является чётной.
Признак делимости на 3
Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.
Признак делимости на 4
Число делится на 4 тогда и только тогда, когда число из двух последних его цифр нули или делится на 4.
Признак делимости на 5
Число делится на 5 тогда и только тогда, когда последняя цифра делится на 5 (то есть равна 0 или 5).
Признак делимости на 6
Число делится на 6 тогда и только тогда, когда оно делится на 2 и на 3.
Признак делимости на 7
Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (например, 259 делится на 7, так как 25 — (2 · 9) = 7 делится на 7).
Признак делимости на 8
Число делится на 8 тогда и только тогда, когда три его последние цифры делятся на 8.
Чтобы узнать, делится ли трёхзначное число на 8, можно половину единиц прибавить к десяткам. У получившегося числа также половину единиц прибавить к десяткам. Если сумма делится на 2, значит, число делится на 8. Например, 952: 95 + 1 = 96, далее 9 + 3 = 12. Значит, 952 делится на 8.
Признак делимости на 9
Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9 без остатка .
Признак делимости на 10
Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.
Признак делимости на 11
На 11 делятся только те числа, у которых сумма цифр, занимающих нечётные места, либо равна сумме цифр, занимающих чётные места, либо отличается от неё на число, делящееся на 11.
Похожие вопросы
- плизз помогите. признак делимости на 8 там надо сложить 3 последние цифры или чё?О_о
- Порядок оказания первой доврачебной помощи, если у пострадавшего обнаружены признаки артериального кровотечения?
- для какого признака впервые была подтвержденахромосомная хромосомная теория наследственности
- О каком внешнем признаке идёт речь?
- впервые в женской моде Впервые в женкой моде предложил (а) маленькое чёрное платье
- Упрямство и черезмерный пыл ? внешний ли внутриний признак глупости? Или глупость не имеет признака?)))))))))
- КТО ВПЕРВЫЕ ПОДАЛ ИДЕЮ ОБЪЕДИНИТЬ ЕВРОПУ В ЕДИНЫЙ СОЮЗ-?(18век)
- Где впервые начали добывать золото?
- что делать с необучаемым ребёнком????За 45 лет стажа впервые испытываю собственное бессилие!
- кто впервые в России разработал теорию дошкольного воспитания обосновав содержание средством и методы физического