Домашние задания: Биология
Микроскопические методы анатомии
Микроскопические методы анатомии
Микроскопические методы исследования - способы изучения различных объектов с помощью микроскопа. В биологии и медицине этими методами изучают строение микроскопических объектов, размеры которых лежат за пределами разрешающей способности глаза человека. Основу микроскопических методов исследования составляют СМ и ЭМ. СМ имеет несколько разновидностей, каждая из которых использует различные свойства света: фазово-контрастная, интерференционная, люминесцентная, поляризационная, стереоскопическая, ультрафиолетовая, инфракрасная.
Световая микроскопия
СМ основывается на таких определяющих факторах, как разрешающая способность микроскопа, направленность светового луча, а также особенности изучаемого объекта, который может быть прозрачным и непрозрачным. В зависимости от свойств объекта изменяются физические свойства света -- его цвет и яркость, связанные с длиной и амплитудой волны, фаза, плоскость и направление распространения волны. Для СМ биологические объекты обычно окрашивают для выявления тех или иных их свойств. При этом ткани должны быть фиксированы, так как окраска выявляет определённые структуры только погибших клеток. В живой клетке краситель обособляется в цитоплазме в виде вакуоли и не прокрашивает клеточные структуры. Тем не менее в СМ можно изучать и живые биологические объекты (витальная микроскопия).
Фазово-контрастная микроскопия применяется для исследования живых и неокрашенных биологических объектов. Она основана на дифракции луча света в зависимости от особенностей объекта изучения, от которых зависит изменение длины и фазы световой волны.
Поляризационная микроскопия позволяет изучать биологические объекты в свете, образованном двумя лучами, поляризованными во взаимно перпендикулярных плоскостях, т.е. в поляризованном свете. Этого достигают с помощью плёнчатых поляроидов или призм Николя, которые помещают в микроскопе между источником света и препаратом. Поляризационная микроскопия является одним из гистологических, а также цитологических методов исследования, способом микробиологической диагностики и др.
Люминесцентная микроскопия основана на свойстве многих веществ давать свечение -- люминесценцию в УФ-лучах или в сине-фиолетовой части спектра света. Ряд биологических веществ, таких как простые белки, коферменты, некоторые витамины, лекарственные средства (ЛС) обладают собственной (первичной) люминесценцией. Другие вещества начинают светиться при добавлении к ним специальных красителей -- флюорохромов (вторичная люминесценция). Флюорохромы могут распределяться в клетке диффузно, но могут избирательно окрашивать отдельные клеточные структуры или определённые химические соединения. Люминесцентную микроскопию применяют для диагностики вирусных инфекций, с помощью вторичной люминесценции диагностируют злокачественные опухоли в гистологических и цитологических препаратах, определяют очаги ишемии мышцы сердца при ранних сроках инфаркта миокарда, выявляют амилоид в биоптатах тканей и т. д.
Ультрафиолетовая и инфракрасная микроскопия основана на способности поглощения УФ- и инфракрасных лучей определённых длин волн некоторыми веществами, входящими в состав живых клеток, микроорганизмов или фиксированных, но не окрашенных тканей, прозрачных в видимом свете. Свойством поглощать УФ-лучи обладают высокомолекулярные соединения, такие как нуклеиновые кислоты, белки, ароматические аминокислоты (тирозин, триптофан, метилаланин), пуриновые и пиримидиновые основания и др.
Для специальных целей в патологии используются и другие микроскопические методы -- интерференционная, стереоскопическая микроскопия и др.
Электронная микроскопия
ЭМ применяют для изучения структуры клеток, микроорганизмов и вирусов на субклеточном и макромолекулярном уровнях.
Световая микроскопия
СМ основывается на таких определяющих факторах, как разрешающая способность микроскопа, направленность светового луча, а также особенности изучаемого объекта, который может быть прозрачным и непрозрачным. В зависимости от свойств объекта изменяются физические свойства света -- его цвет и яркость, связанные с длиной и амплитудой волны, фаза, плоскость и направление распространения волны. Для СМ биологические объекты обычно окрашивают для выявления тех или иных их свойств. При этом ткани должны быть фиксированы, так как окраска выявляет определённые структуры только погибших клеток. В живой клетке краситель обособляется в цитоплазме в виде вакуоли и не прокрашивает клеточные структуры. Тем не менее в СМ можно изучать и живые биологические объекты (витальная микроскопия).
Фазово-контрастная микроскопия применяется для исследования живых и неокрашенных биологических объектов. Она основана на дифракции луча света в зависимости от особенностей объекта изучения, от которых зависит изменение длины и фазы световой волны.
Поляризационная микроскопия позволяет изучать биологические объекты в свете, образованном двумя лучами, поляризованными во взаимно перпендикулярных плоскостях, т.е. в поляризованном свете. Этого достигают с помощью плёнчатых поляроидов или призм Николя, которые помещают в микроскопе между источником света и препаратом. Поляризационная микроскопия является одним из гистологических, а также цитологических методов исследования, способом микробиологической диагностики и др.
Люминесцентная микроскопия основана на свойстве многих веществ давать свечение -- люминесценцию в УФ-лучах или в сине-фиолетовой части спектра света. Ряд биологических веществ, таких как простые белки, коферменты, некоторые витамины, лекарственные средства (ЛС) обладают собственной (первичной) люминесценцией. Другие вещества начинают светиться при добавлении к ним специальных красителей -- флюорохромов (вторичная люминесценция). Флюорохромы могут распределяться в клетке диффузно, но могут избирательно окрашивать отдельные клеточные структуры или определённые химические соединения. Люминесцентную микроскопию применяют для диагностики вирусных инфекций, с помощью вторичной люминесценции диагностируют злокачественные опухоли в гистологических и цитологических препаратах, определяют очаги ишемии мышцы сердца при ранних сроках инфаркта миокарда, выявляют амилоид в биоптатах тканей и т. д.
Ультрафиолетовая и инфракрасная микроскопия основана на способности поглощения УФ- и инфракрасных лучей определённых длин волн некоторыми веществами, входящими в состав живых клеток, микроорганизмов или фиксированных, но не окрашенных тканей, прозрачных в видимом свете. Свойством поглощать УФ-лучи обладают высокомолекулярные соединения, такие как нуклеиновые кислоты, белки, ароматические аминокислоты (тирозин, триптофан, метилаланин), пуриновые и пиримидиновые основания и др.
Для специальных целей в патологии используются и другие микроскопические методы -- интерференционная, стереоскопическая микроскопия и др.
Электронная микроскопия
ЭМ применяют для изучения структуры клеток, микроорганизмов и вирусов на субклеточном и макромолекулярном уровнях.
Марина Winner
Большое спасибо
Похожие вопросы
- Помогите с анатомией и физиологией сердца
- Проверочная работа по теме: «Методы изучения живой природы».
- Здравствуйте! Какая разница между мужским и женским скелетом? (анатомия)
- АНАТОМИЯ Какими способами можно усилить функциональную активность системы? В ответе отразите мишени, на которые
- Методы генетики. Что такое метод генной инженерии?
- Методы изучения биологии
- В мазке из мокроты больного обнаружены кокки. Можно ли микроскопическим методом определить их род и вид?Обоснуйте ответ
- В чём отличие реликтового излучения одного супер Большого Взрыва от множества текущих микроскопических Больших Взрывов?
- Медики, кто как учил анатомию?
- Оценка рисунка, что с анатомией?