Компьютерное железо

Как в домашних условиях можно собрать квантовый компьютер?

слепи из пластелина.
Тааlaybek Subankulov
Тааlaybek Subankulov
5 356
Лучший ответ
это у Билла Гейтса надо спрашивать
Идея квантовых вычислений состоит в том, что квантовая система из L двухуровневых квантовых элементов (квантовых битов, кубитов) имеет 2L линейно независимых состояний, а значит, вследствие принципа квантовой суперпозиции, пространством состояний такого квантового регистра является 2L-мерное гильбертово пространство. Операция в квантовых вычислениях соответствует повороту вектора состояния регистра в этом пространстве. Таким образом, квантовое вычислительное устройство размером L кубит фактически задействует одновременно 2L классических состояний.

Физическими системами, реализующими кубиты, могут быть любые объекты, имеющие два квантовых состояния: поляризационные состояния фотонов, электронные состояния изолированных атомов или ионов, спиновые состояния ядер атомов, и т. д.

Один классический бит может находиться в одном и только в одном из состояний или . Квантовый бит, называемый кубитом, находится в состоянии, так что |a|² и |b|² — вероятности получить 0 или 1 соответственно при измерении этого состояния; ; |a|² + |b|² = 1. Сразу после измерения кубит переходит в базовое квантовое состояние, соответствующее классическому результату.

Пример:
Имеется кубит в квантовом состоянии
В этом случае, вероятность получить при измерении0составляет (4/5)²=16/25= 64 %,
1(-3/5)²=9/25= 36 %.

В данном случае, при измерении мы получили 0 с 64 % вероятностью.
В результате измерения кубит переходит в новое квантовое состояние, то есть, при следующем измерении этого кубита мы получим 0 со стопроцентной вероятностью (предполагается, что по умолчанию унитарная операция тождественна; в реальных системах это не всегда так) .

Приведем для объяснения два примера из квантовой механики: 1) фотон находится в состоянии суперпозиции двух поляризаций. Это состояние есть вектор в двумерной плоскости, систему координат в которой можно представлять как две перпендикулярные оси, так что и есть проекции на эти оси; измерение раз и навсегда коллапсирует состояние фотона в одно из состояний или, причем вероятность коллапса равна квадрату соответствующей проекции. Полная вероятность получается по теореме Пифагора.

Перейдем к системе из двух кубитов. Измерение каждого из них может дать 0 или 1. Поэтому у системы есть 4 классических состояния: 00, 01, 10 и 11. Аналогичные им базовые квантовые состояния: . И наконец, общее квантовое состояние системы имеет вид . Теперь |a|² — вероятность измерить 00 и т. д. Отметим, что |a|²+|b|²+|c|²+|d|²=1 как полная вероятность.

Если мы измерим только первый кубит квантовой системы, находящейся в состоянии, у нас получится:
С вероятностью первый кубит перейдет в состояние а второй — в состояние, а
С вероятностью первый кубит перейдет в состояние а второй — в состояние .

В первом случае измерение даст состояние, во втором — состояние

Мы снова видим, что результат такого измерения невозможно записать как вектор в гильбертовом пространстве состояний. Такое состояние, в котором участвует наше незнание о том, какой же результат получится на первом кубите, называют смешанным состоянием. В нашем случае такое смешанное состояние называют проекцией исходного состояния на второй кубит, и записывают в виде матрицы плотности вида где матрица плотности состояния определяется как .

В общем случае системы из L кубитов, у неё 2L классических состояний (00000…(L-нулей) , …00001(L-цифр) , … , 11111…(L-единиц)) , каждое из которых может быть измерено с вероятностями 0—100 %.

Таким образом, одна операция над группой кубитов затрагивает все значения, которые она может принимать, в отличие от классического бита. Это и обеспечивает беспрецедентный параллелизм вычислений.
Виктор Бояркин
Виктор Бояркин
49 546
да без проблемм, только лет через 50
Денис Процик
Денис Процик
48 776
надо быть Тонни Старк. из фильма железный чел =)