Логарифм по основанию a от аргумента x — это степень, в которую надо возвести число a, чтобы получить число x.Обозначение: loga x = b, где a — основание, x — аргумент, b — собственно, чему равен логарифм. Например, 23 = 8 ⇒ log2 8 = 3 (логарифм по основанию 2 от числа 8 равен трем, поскольку 23 = 8). С тем же успехом log2 64 = 6, поскольку 26 = 64.Операцию нахождения логарифма числа по заданному основанию называют логарифмированием. Итак, дополним нашу таблицу новой строкой:
Продолжение в ссылке:
https://www.berdov.com/docs/logarithm/what/
Прочее образование
Уже второй год в математике решаем примеры с каким-то log? Что, блин, такое log?
За два года можно было бы и узнать :))
это десятичный логарифм.
Если немного перефразировать - Логарифм числа по основанию определяется как показатель степени, в которую надо возвести число, чтобы получить число (Логарифм существует только у положительных чисел).
Специальные обозначения:
Натуральный логарифм - логарифм по основанию е, где е - число Эйлера.
Десятичный логарифм - логарифм по основанию 10.
Например, log10=1 log100=2
Если немного перефразировать - Логарифм числа по основанию определяется как показатель степени, в которую надо возвести число, чтобы получить число (Логарифм существует только у положительных чисел).
Специальные обозначения:
Натуральный логарифм - логарифм по основанию е, где е - число Эйлера.
Десятичный логарифм - логарифм по основанию 10.
Например, log10=1 log100=2
log - логарифм
Логарифм
[править | править код]
Материал из Википедии — свободной энциклопедии
График двоичного логарифма
Логари́фм числа {\displaystyle b} b по основанию {\displaystyle a} a (от греч. λόγος — «слово», «отношение» и ἀριθμός — «число» [1]) определяется [2] как показатель степени, в которую надо возвести основание {\displaystyle a} a, чтобы получить число {\displaystyle b} b. Обозначение: {\displaystyle \log _{a}b} \log _{a}b, произносится: «логарифм {\displaystyle b} b по основанию {\displaystyle a} a».
Из определения следует, что нахождение {\displaystyle x=\log _{a}b} {\displaystyle x=\log _{a}b} равносильно решению уравнения {\displaystyle a^{x}=b} a^{x}=b. Например, {\displaystyle \log _{2}8=3} \log _{2}8=3, потому что {\displaystyle 2^{3}=8} 2^{3}=8.
Вычисление логарифма называется логарифмированием. Числа {\displaystyle a,b} a,b чаще всего вещественные, но существует также теория комплексных логарифмов [⇨].
Логарифмы обладают уникальными свойствами, которые определили их широкое использование для существенного упрощения трудоёмких вычислений [3]. При переходе «в мир логарифмов» умножение заменяется на значительно более простое сложение, деление — на вычитание, а возведение в степень и извлечение корня преобразуются соответственно в умножение и деление на показатель степени. Лаплас говорил, что изобретение логарифмов, «сократив труд астронома, удвоило его жизнь» [4].
Определение логарифмов и таблицу их значений (для тригонометрических функций) впервые опубликовал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, расширенные и уточнённые другими математиками, повсеместно использовались для научных и инженерных расчётов более трёх веков, пока не появились электронные калькуляторы и компьютеры.
Со временем выяснилось, что логарифмическая функция {\displaystyle y=\log _{a}x} y=\log _{a}x незаменима и во многих других областях человеческой деятельности: решение дифференциальных уравнений, классификация значений величин (например, частота и интенсивность звука), аппроксимация различных зависимостей, теория информации, теория вероятностей и т. д. Эта функция относится к числу элементарных, она обратна по отношению к показательной функции. Чаще всего используются вещественные логарифмы с основаниями {\displaystyle 2} 2 (двоичный), {\displaystyle e} e (натуральный логарифм) и {\displaystyle 10} 10 (десятичный).
Логарифм
[править | править код]
Материал из Википедии — свободной энциклопедии
График двоичного логарифма
Логари́фм числа {\displaystyle b} b по основанию {\displaystyle a} a (от греч. λόγος — «слово», «отношение» и ἀριθμός — «число» [1]) определяется [2] как показатель степени, в которую надо возвести основание {\displaystyle a} a, чтобы получить число {\displaystyle b} b. Обозначение: {\displaystyle \log _{a}b} \log _{a}b, произносится: «логарифм {\displaystyle b} b по основанию {\displaystyle a} a».
Из определения следует, что нахождение {\displaystyle x=\log _{a}b} {\displaystyle x=\log _{a}b} равносильно решению уравнения {\displaystyle a^{x}=b} a^{x}=b. Например, {\displaystyle \log _{2}8=3} \log _{2}8=3, потому что {\displaystyle 2^{3}=8} 2^{3}=8.
Вычисление логарифма называется логарифмированием. Числа {\displaystyle a,b} a,b чаще всего вещественные, но существует также теория комплексных логарифмов [⇨].
Логарифмы обладают уникальными свойствами, которые определили их широкое использование для существенного упрощения трудоёмких вычислений [3]. При переходе «в мир логарифмов» умножение заменяется на значительно более простое сложение, деление — на вычитание, а возведение в степень и извлечение корня преобразуются соответственно в умножение и деление на показатель степени. Лаплас говорил, что изобретение логарифмов, «сократив труд астронома, удвоило его жизнь» [4].
Определение логарифмов и таблицу их значений (для тригонометрических функций) впервые опубликовал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, расширенные и уточнённые другими математиками, повсеместно использовались для научных и инженерных расчётов более трёх веков, пока не появились электронные калькуляторы и компьютеры.
Со временем выяснилось, что логарифмическая функция {\displaystyle y=\log _{a}x} y=\log _{a}x незаменима и во многих других областях человеческой деятельности: решение дифференциальных уравнений, классификация значений величин (например, частота и интенсивность звука), аппроксимация различных зависимостей, теория информации, теория вероятностей и т. д. Эта функция относится к числу элементарных, она обратна по отношению к показательной функции. Чаще всего используются вещественные логарифмы с основаниями {\displaystyle 2} 2 (двоичный), {\displaystyle e} e (натуральный логарифм) и {\displaystyle 10} 10 (десятичный).
Похожие вопросы
- Можно ли заработать в Интернете на фрилансе работой по математике, решать задачи, примеры и пр.?
- Можно ли за 2 года наверстать математику до высшей?
- Можно ли подготовиться к ЕГЭ за учебный год по математике
- Оставят ли на второй год если стоит 2 за год
- Оставят его на второй год?
- Могут ли оставить на второй год, или на лето?
- Возможно ли за 2 года выучить математику?
- Могут ли оставить на второй год, если не сдать устный экзамен?
- Оставляют на второй год...
- что такое log в математике и для чего он нужен