Домашние задания: Другие предметы
КАк Перевести отрицательное число из десятичной в двоичную систему счисления?
так же, т. е. его модуль делить на 2. потом минус нарисовать
Казыбек Досыбеков
Ты долбоеб
также как и положительное только минус приписать
«Да очень просто!» . Сейчас в каждом учебнике информатики встречается такая тема, как «Перевод чисел из одной системы счисления в другую» , и особое внимание там уделяется именно двоичной системе счисления. Но, несмотря на то, как хорошо там всё объяснено, мало кто понимает. И в данной статье я постараюсь достаточно точно и чётко всё объяснить.
Итак, что же такое системы счисления? Системой счисления называют способ записи чисел с помощью заданного набора специальных знаков или цифр. В двоичной системе счисления всего два таких знака, это 0 и 1. Двоичная система счисления используется в вычислительных машинах. Выбор двоичной системы объясняется тем, что электронные элементы, из которых строились и строятся ЭВМ, могут находиться только в двух хорошо различимых устойчивых рабочих состояниях. Словом, эти элементы представляются нам в роли выключателей. А как мы все знаем, выключатель может быть включен или выключен. Третьего не дано. Одно из состояний выключателя обозначается 0, а другое — 1.
Итак, перейдём непосредственно к теме нашей статьи. Как же переводить числа из одной системы счисления в другую? Развёрнутая запись двоичного числа может выглядеть так:
A = 1 • 2^2 + 0 • 2^1 + 1 • 2^0 + 0 • 2^(–1) + 1 • 2^(–2). (^ — знак степени) . А свёрнутая форма этого же числа выглядит уже так: А = 101,01. В общем случае в двоичной системе запись числа А, которое содержит n целых разрядов и m дробных разрядов числа, выглядит так:
А = a(n–1) • 2^(n–1) + a(n–2) • 2^(n–2) +…a(0) • 2^0 + a(–1) • 2^(–1)+…a(–m) • 2^(–m).
Коэффициент a(i) в этой записи являются цифрами (0 или 1) двоичного числа, которое в свёрнутой форме записывается так:
A = a(n–1) a(n–2)…a(0), a(–1) a(–2) a(–m).
Теперь я предоставляю вашему вниманию алгоритм перевода целых десятичных чисел в двоичную систему счисления.
Пусть А (цд) – целое десятичное число. Запишем его в виде суммы степеней основания 2 с двоичными коэффициентами. В его записи в развёрнутой форме будут отсутствовать отрицательные степени основания (числа 2):
A(цд) = a(n–1) • 2^(n–1) + a(n–2) • 2^(n–2) + … + a(1) • 2^1 + a(0) • 2^0.
На первом шаге разделим число А (цд) на основание двоичной системы, то есть на 2. Частное от деления будет равно:
a(n–1) • 2^(n–2) + a(n–2) • 2^(n–3) + … + a(1), а остаток равен a(0).
На втором шаге целое частное опять разделим на 2, остаток от деления будет теперь равен a(1).
Если продолжать этот процесс деления, то после n-го шага получим последовательность остатков:
a(0), a(1),…, a(n–1).
Легко заметить, что их последовательность совпадает с обратной последовательностью цифр целого двоичного числа, записанного в свёрнутой форме:
A(2) = a(n–1)…a(1)a(0).
Таким образом, достаточно записать остатки в обратной последовательности, чтобы получить искомое двоичное число.
Тогда сам алгоритм будет следующим:
1. Последовательно выполнять деление исходного целого десятичного числа и получаемых целых частных на основание системы (на 2) до тех пор, пока не получится частное, меньшее делителя, то есть меньше 2.
2. Записать полученные остатки в обратной последовательности, а слева добавить последнее частное.
А теперь рассмотрим алгоритм перевода правильных десятичных дробей в
двоичную систему счисления.
Пусть А (дд) — правильная десятичная дробь. В её записи в развёрнутой форме будут отсутствовать положительные степени основания (числа 2):
A(дд) = a(–1) • 2^(–1) + a(–2) • 2(–2) + …
На первом шаге умножим число A(дд) на основание двоичной системы, то есть на 2. Произведение будет равно:
a(–1) + a(–2) • 2^(–1) + … Целая часть будет равна a(–1).
На втором шаге оставшуюся дробную часть опять умножим на 2, получим целую часть, равную a(–2).
Описанный процесс необходимо продолжать до тех пор, пока в результате умножения мы не получим нулевую дробную часть или не будет достигнута требуемая точность вычислений.
И тут легко заметить, что последовательность полученных чисел совпадает с последовательностью цифр дробного двоичного числа, записан
Итак, что же такое системы счисления? Системой счисления называют способ записи чисел с помощью заданного набора специальных знаков или цифр. В двоичной системе счисления всего два таких знака, это 0 и 1. Двоичная система счисления используется в вычислительных машинах. Выбор двоичной системы объясняется тем, что электронные элементы, из которых строились и строятся ЭВМ, могут находиться только в двух хорошо различимых устойчивых рабочих состояниях. Словом, эти элементы представляются нам в роли выключателей. А как мы все знаем, выключатель может быть включен или выключен. Третьего не дано. Одно из состояний выключателя обозначается 0, а другое — 1.
Итак, перейдём непосредственно к теме нашей статьи. Как же переводить числа из одной системы счисления в другую? Развёрнутая запись двоичного числа может выглядеть так:
A = 1 • 2^2 + 0 • 2^1 + 1 • 2^0 + 0 • 2^(–1) + 1 • 2^(–2). (^ — знак степени) . А свёрнутая форма этого же числа выглядит уже так: А = 101,01. В общем случае в двоичной системе запись числа А, которое содержит n целых разрядов и m дробных разрядов числа, выглядит так:
А = a(n–1) • 2^(n–1) + a(n–2) • 2^(n–2) +…a(0) • 2^0 + a(–1) • 2^(–1)+…a(–m) • 2^(–m).
Коэффициент a(i) в этой записи являются цифрами (0 или 1) двоичного числа, которое в свёрнутой форме записывается так:
A = a(n–1) a(n–2)…a(0), a(–1) a(–2) a(–m).
Теперь я предоставляю вашему вниманию алгоритм перевода целых десятичных чисел в двоичную систему счисления.
Пусть А (цд) – целое десятичное число. Запишем его в виде суммы степеней основания 2 с двоичными коэффициентами. В его записи в развёрнутой форме будут отсутствовать отрицательные степени основания (числа 2):
A(цд) = a(n–1) • 2^(n–1) + a(n–2) • 2^(n–2) + … + a(1) • 2^1 + a(0) • 2^0.
На первом шаге разделим число А (цд) на основание двоичной системы, то есть на 2. Частное от деления будет равно:
a(n–1) • 2^(n–2) + a(n–2) • 2^(n–3) + … + a(1), а остаток равен a(0).
На втором шаге целое частное опять разделим на 2, остаток от деления будет теперь равен a(1).
Если продолжать этот процесс деления, то после n-го шага получим последовательность остатков:
a(0), a(1),…, a(n–1).
Легко заметить, что их последовательность совпадает с обратной последовательностью цифр целого двоичного числа, записанного в свёрнутой форме:
A(2) = a(n–1)…a(1)a(0).
Таким образом, достаточно записать остатки в обратной последовательности, чтобы получить искомое двоичное число.
Тогда сам алгоритм будет следующим:
1. Последовательно выполнять деление исходного целого десятичного числа и получаемых целых частных на основание системы (на 2) до тех пор, пока не получится частное, меньшее делителя, то есть меньше 2.
2. Записать полученные остатки в обратной последовательности, а слева добавить последнее частное.
А теперь рассмотрим алгоритм перевода правильных десятичных дробей в
двоичную систему счисления.
Пусть А (дд) — правильная десятичная дробь. В её записи в развёрнутой форме будут отсутствовать положительные степени основания (числа 2):
A(дд) = a(–1) • 2^(–1) + a(–2) • 2(–2) + …
На первом шаге умножим число A(дд) на основание двоичной системы, то есть на 2. Произведение будет равно:
a(–1) + a(–2) • 2^(–1) + … Целая часть будет равна a(–1).
На втором шаге оставшуюся дробную часть опять умножим на 2, получим целую часть, равную a(–2).
Описанный процесс необходимо продолжать до тех пор, пока в результате умножения мы не получим нулевую дробную часть или не будет достигнута требуемая точность вычислений.
И тут легко заметить, что последовательность полученных чисел совпадает с последовательностью цифр дробного двоичного числа, записан
Похожие вопросы
- Переведите пжста число из десятичной системы счисления в двоичную!число 64,488???
- Переведи в десятичную систему числа 101, 101010, 10110111011переведите в двоичную систему счисления 2, 17, 315, 2047
- переведите числа из двоичной системы счисления в десятичную,с пояснением пожалуйста
- скажите пожалуйста как перевести число 10011000 с двоичной системы счисления в восьмеричную и десятичную ??
- помогите сложить и вычесть числа в 16 и 8 системах счисления (4 примера)
- В системе счисления с некоторым основанием десятичное число 39 записывается в виде 103. Указать основание
- ИКТ. Перевод из двоичной системы в десятичную.
- Переведите восьмеричное число 0.3(52)8 в систему счисления по основанию 16.
- Перевести число 312 из десятичной в 16ричную систему с решением
- Помогите решить задачу по системам счисления.