Случайная величина Х распределена по нормальному закону с параметрами а=0, сигма=1. Найти плотность вероятности величины Y=|X|
Объясните пожалуйста как решить?
Домашние задания: Другие предметы
Как решить задачу? Закон нормального распределения
Закон нормального распределения
Случайная величина Х распределена по нормальному закону с параметрами а=0, сигма=1. Найти плотность вероятности величины Y=|X|
Как решаются подобные задачи?
Случайной называется величина, которая в результате испытания может принять то или иное возможное значение, неизвестное заранее, но обязательно одно.
Пример. В студенческой группе 25 человек. Пусть величина Х – число студентов, находящихся в аудитории перед началом занятий. Ее возможными значениями будут числа 0, 1, 2,…,25.
При каждом испытании (начало занятий) величина Х обязательно примет одно из своих возможных значений, т. е. наступит одно из событий Х = 0, Х = 1, …, Х = 25.
Пример. Измерение курса акции некоторого предприятия. Возможные события заключаются в том, что стоимость акции Y примет некоторое значение в пределах от 0 до ∞.
Пример. Однократное бросание игральной кости. Возможные события заключаются в том, что на верхней грани выпадает Z: 1, 2, 3, 4, 5, 6.
Пример. Подбрасывается монета n раз. Возможные результаты: герб выпал 0, 1, 2, …, n раз.
Различают дискретные и непрерывные случайные величины.
Если множество возможных значений случайной величины конечно или образуют бесконечную числовую последовательность, то такая случайная величина называется дискретной (примеры 3.1, 3.3, 3.4).
Случайная величина, множество значений которой заполняет сплошь некоторый числовой промежуток, называется непрерывной (пример 3.2). Заметим, что дискретные и непрерывные величины не исчерпывают все типы случайных величин.
Если случайная величина не относится ни к дискретным, ни к непрерывным случайным величинам, то ее называют смешанной.
Очевидно, что для полной характеристики дискретной случайной величины мало знать ее значения. Необходимо им поставить в соответствие вероятности.
Соответствие между всеми возможными значениями дискретной случайной величины и их вероятностями называется законом распределения данной случайной величины.
Простейшая формой задания закона распределения дискретной случайной величины является таблица, в которой перечислены возможные значения случайной величины (обычно в порядке возрастания) и соответствующие им вероятности:
Х
х1
х2
хn
Р
р1
р2
рn
Такая таблица называется рядом распределения. Допустим, что число возможных значений случайной величины конечно: х1, х2, …, хn. При одном испытании случайная величина принимает одно и только одно постоянное значение. Поэтому события Х = хi (i = 1, 2, … , n) образуют полную группу попарно независимых событий. Следовательно, р1 + р2 + … + рn = 1.
Можно закон распределения изобразить и графически, откладывая на оси абсцисс возможные значения случайной величины, а на оси ординат – соответствующие вероятности. Для большей выразительности полученные точки соединяются прямолинейными отрезками. Получающая при этом фигура называется многоугольником (полигоном) распределения.
http://math.immf.ru/lections/202.html
http: //physics- animations. com/ matboard/ themes/5599. html
Среди всех законов распределения непрерывной случайной величины X, для которых плотность вероятности =0 при x<=0, найти закон распределения, при котором дифференциальная энтропия максимальна .
Случайная величина Х распределена по нормальному закону с параметрами а=0, сигма=1. Найти плотность вероятности величины Y=|X|
Как решаются подобные задачи?
Случайной называется величина, которая в результате испытания может принять то или иное возможное значение, неизвестное заранее, но обязательно одно.
Пример. В студенческой группе 25 человек. Пусть величина Х – число студентов, находящихся в аудитории перед началом занятий. Ее возможными значениями будут числа 0, 1, 2,…,25.
При каждом испытании (начало занятий) величина Х обязательно примет одно из своих возможных значений, т. е. наступит одно из событий Х = 0, Х = 1, …, Х = 25.
Пример. Измерение курса акции некоторого предприятия. Возможные события заключаются в том, что стоимость акции Y примет некоторое значение в пределах от 0 до ∞.
Пример. Однократное бросание игральной кости. Возможные события заключаются в том, что на верхней грани выпадает Z: 1, 2, 3, 4, 5, 6.
Пример. Подбрасывается монета n раз. Возможные результаты: герб выпал 0, 1, 2, …, n раз.
Различают дискретные и непрерывные случайные величины.
Если множество возможных значений случайной величины конечно или образуют бесконечную числовую последовательность, то такая случайная величина называется дискретной (примеры 3.1, 3.3, 3.4).
Случайная величина, множество значений которой заполняет сплошь некоторый числовой промежуток, называется непрерывной (пример 3.2). Заметим, что дискретные и непрерывные величины не исчерпывают все типы случайных величин.
Если случайная величина не относится ни к дискретным, ни к непрерывным случайным величинам, то ее называют смешанной.
Очевидно, что для полной характеристики дискретной случайной величины мало знать ее значения. Необходимо им поставить в соответствие вероятности.
Соответствие между всеми возможными значениями дискретной случайной величины и их вероятностями называется законом распределения данной случайной величины.
Простейшая формой задания закона распределения дискретной случайной величины является таблица, в которой перечислены возможные значения случайной величины (обычно в порядке возрастания) и соответствующие им вероятности:
Х
х1
х2
хn
Р
р1
р2
рn
Такая таблица называется рядом распределения. Допустим, что число возможных значений случайной величины конечно: х1, х2, …, хn. При одном испытании случайная величина принимает одно и только одно постоянное значение. Поэтому события Х = хi (i = 1, 2, … , n) образуют полную группу попарно независимых событий. Следовательно, р1 + р2 + … + рn = 1.
Можно закон распределения изобразить и графически, откладывая на оси абсцисс возможные значения случайной величины, а на оси ординат – соответствующие вероятности. Для большей выразительности полученные точки соединяются прямолинейными отрезками. Получающая при этом фигура называется многоугольником (полигоном) распределения.
http://math.immf.ru/lections/202.html
http: //physics- animations. com/ matboard/ themes/5599. html
Среди всех законов распределения непрерывной случайной величины X, для которых плотность вероятности =0 при x<=0, найти закон распределения, при котором дифференциальная энтропия максимальна .
Похожие вопросы
- Помогите решить задачи по физике оч надо,плииз!!!!Умоляю нужно моей сестренке на домашнем обучении!!!!
- помогите решить задачу за 2 класс
- Пожалуйста помогите решить задачу по физике (Закон сохранения заяда.Закон кулона)!
- Помогите мне решить задачу
- Помогите пожалуйста решить задачу
- Помогите решить задачу срочно!!!
- Помогите!! Как решить задачу?!
- Решите задачи: смотреть в описание
- Помогите решить задачу (3 класс школы) СРОЧНО!!!!
- Теория вероятности. Помогите решить задачи.