Прочее непознанное

Кто-нибудь объяснит мне гипотезу Пуанкаре простыми словами? А то я уже столько видео посмотрел, прочитал, так и не допёрло

простыми словами, если трехмерная поверхность кое в чем похожа на сферу, то, если ее расправить, она может стать только сферой и ничем иным. http://www.vokrugsveta.ru/img/cmn/2010/04/01/009.jpg
LA
Laki Angel
53 037
Лучший ответ
изз бублика низзя сделать колобка ---дыррка остаетси
Анна Карина
Анна Карина
64 151
Да яйца выеденного не стоит эта гипотеза. ))) Если у Вас десяток пластилиновых фигурок, то Вы можете легко все их взять и закатать в шар. )) Примерно так. Ну и что? )))
Гипотеза Пуанкаре́ является одной из наиболее известных задач топологии. Она даёт достаточное условие того, что пространство является трёхмерной сферой с точностью до деформации.
Гипотеза Пуанкаре
В исходной форме гипотеза Пуанкаре утверждает:
Всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере.
Обобщённая гипотеза Пуанкаре
Обобщённая гипотеза Пуанкаре утверждает:
Для любого натурального числа n всякое многообразие размерности n гомотопически эквивалентно сфере размерности n тогда и только тогда, когда оно гомеоморфно ей.
Исходная гипотеза Пуанкаре является частным случаем обобщённой гипотезы при n = 3.

Схема доказательства

Поток Риччи — это определённое уравнение в частных производных, похожее на уравнение теплопроводности. Он позволяет деформировать риманову метрику на многообразии, но в процессе деформации возможно образование «сингулярностей» — точек, в которых кривизна стремится к бесконечности, и деформацию невозможно продолжить. Основной шаг в доказательстве состоит в классификации таких сингулярностей в трёхмерном ориентированном случае. При подходе к сингулярности поток останавливают и производят «хирургию» — выбрасывают малую связную компоненту или вырезают «шею» (то есть, вложенное ), а полученные две дырки заклеивают двумя шарами так, что метрика полученного многообразия становится достаточно гладкой — после чего продолжают деформацию. Классификация сингулярностей позволяет заключить, что каждый «выброшенный кусок» диффеоморфен сферической пространственной форме. Процесс, описанный выше, называется «поток Риччи с хирургией» .
При доказательстве гипотезы Пуанкаре начинают с произвольной римановой метрики на односвязном трёхмерном многообразии M и применяют к нему поток Риччи с хирургией. Важным шагом является доказательство того, что в результате такого процесса «выбрасывается» всё. Это означает, что исходное многообразие M можно представить как набор сферических пространственных форм S3 / Γi, соединённых друг с другом трубками . Подсчёт фундаментальной группы показывает, что M диффеоморфно связанной сумме набора пространственных форм S3 / Γi и более того все Γi тривиальны. Таким образом, M является связной суммой набора сфер, то есть, сферой.
Леночка
Леночка
1 018