Домашние задания: Алгебра
Алгебра 7 класс.
Объясните понятно зачем нужны графики функций, где их можно применять, и в чем отличие линейного уравнения от обычного.
1.4 Возникновение и понятие функции в Древней Греции
В Древней Греции наука приняла иной характер, чем в Египте и в Вавилоне. Появились профессиональные ученые, которые изучали саму математическую науку, занимались строгими логическими выводами одних утверждений из других. Многое из того, что делали древнегреческие математики, тоже могло привести к возникновению понятия о функции. Они решали задачи на построение и смотрели, при каких значениях задача имеет решение, изучали, сколько решений может иметь эта задача, и т.д. Древние греки нашли много различных кривых, неизвестных писцам Египта и Вавилона, изучали зависимости между отрезками диаметров и хорд в круге, эллипсе и других линиях. Но все же древнегреческие математики не создали общего понятия функции.
1.5 Графическое изображение зависимостей, история возникновения
Исследование общих зависимостей началось в 14 веке. Средневековая наука была схоластической. Для доказательства своей правоты ученые прибегли не к опыту, а к цитатам из Аристотеля и Платона или к ссылкам на библейские сказания. При таком характере "научных дискуссий" не оставалось места изучению количественных зависимостей, речь шла лишь о качествах предметов и их связях друг с другом. Но среди схоластов возникла школа, утверждавшая, что качества могут быть более или менее интенсивными (платье человека, свалившегося в реку, мокрее, чем у того, кто лишь попал под дождь)
Французский ученый Николай Оресм стал изображать интенсивность длинами отрезков. Когда он располагал эти отрезки перпендикулярно некоторой прямой, их концы образовывали линию, названную им "линией интенсивностей" или "линией верхнего края". Современный читатель сразу узнает в ней график соответствующей функциональной зависимости. Оресм изучал даже "плоскостные" и "телесные" качества, т.е. функции, зависящие от двух или трех переменных.
Важным достижением Оресма была попытка классифицировать получившиеся графики. Он выделил три типа качеств: Равномерные (с постоянной интенсивностью), равномерно-неравномерные (с постоянной скоростью изменения интенсивности) и неравномерно-неравномерные (все остальные), а также характерные свойства графиков таких качеств.
Идеи Оресма на много обогнали тогдашний уровень науки. Чтобы развивать их дальше, нужно было уметь выражать зависимости между величинами не только графически, но и с помощью формул, а буквенной, алгебры в то время не существовало. Лишь после того, как в течение 16 века была постепенно создана буквенная алгебра, удалось сделать следующий шаг в развитии понятия функции.
В Древней Греции наука приняла иной характер, чем в Египте и в Вавилоне. Появились профессиональные ученые, которые изучали саму математическую науку, занимались строгими логическими выводами одних утверждений из других. Многое из того, что делали древнегреческие математики, тоже могло привести к возникновению понятия о функции. Они решали задачи на построение и смотрели, при каких значениях задача имеет решение, изучали, сколько решений может иметь эта задача, и т.д. Древние греки нашли много различных кривых, неизвестных писцам Египта и Вавилона, изучали зависимости между отрезками диаметров и хорд в круге, эллипсе и других линиях. Но все же древнегреческие математики не создали общего понятия функции.
1.5 Графическое изображение зависимостей, история возникновения
Исследование общих зависимостей началось в 14 веке. Средневековая наука была схоластической. Для доказательства своей правоты ученые прибегли не к опыту, а к цитатам из Аристотеля и Платона или к ссылкам на библейские сказания. При таком характере "научных дискуссий" не оставалось места изучению количественных зависимостей, речь шла лишь о качествах предметов и их связях друг с другом. Но среди схоластов возникла школа, утверждавшая, что качества могут быть более или менее интенсивными (платье человека, свалившегося в реку, мокрее, чем у того, кто лишь попал под дождь)
Французский ученый Николай Оресм стал изображать интенсивность длинами отрезков. Когда он располагал эти отрезки перпендикулярно некоторой прямой, их концы образовывали линию, названную им "линией интенсивностей" или "линией верхнего края". Современный читатель сразу узнает в ней график соответствующей функциональной зависимости. Оресм изучал даже "плоскостные" и "телесные" качества, т.е. функции, зависящие от двух или трех переменных.
Важным достижением Оресма была попытка классифицировать получившиеся графики. Он выделил три типа качеств: Равномерные (с постоянной интенсивностью), равномерно-неравномерные (с постоянной скоростью изменения интенсивности) и неравномерно-неравномерные (все остальные), а также характерные свойства графиков таких качеств.
Идеи Оресма на много обогнали тогдашний уровень науки. Чтобы развивать их дальше, нужно было уметь выражать зависимости между величинами не только графически, но и с помощью формул, а буквенной, алгебры в то время не существовало. Лишь после того, как в течение 16 века была постепенно создана буквенная алгебра, удалось сделать следующий шаг в развитии понятия функции.
А обычное уравнение - это какое?
Сергей Лихачёв
x+2=6
Свободное владение техникой построения графиков часто помогает решать многие задачи, а порой является естественным средством их решения. Экологические проблемы являются глобальными проблемами человечества, всех стран независимо от размеров территории, численности населения, уровня экономического развития - всё можно представить в виде графиков. Например, графиком квадратичной функции является парабола. Хорошо известно, что траектория камня, брошенного под углом к горизонту, летящего футбольного мяча, струи воды, выпущенной из шланга, парашютиста, выпрыгнувшего из горизонтально летящего самолета, артиллерийского снаряда, будет параболой (при отсутствии сопротивления воздуха). Замечательное свойство параболы широко используется в науке и технике, например, параболическая арка; свод моста.
Известно также, что многие законы природы выражаются в виде квадратичной зависимости.
Свойство параболических зеркал используют при конструировании солнечных печей, солнечных электростанций, отражательных телескопов - рефлекторов. Параболы в природе - это и природный парк Ергаки, Западные Саяны, гора Парабола; радуга – природная парабола; наша галактика – вогнутая парабола.
Линeйная функция. Например, благодаря функции мы можем вычислить сколько раз в месяц нужно посещать парикмахерскую.
Если молодой человек хочет что бы у него длина волос была не длиннее 7 см, но и не короче 4 см, зная, что скорость роста волос 1,5 см в месяц, мы можем использовать график и увидеть с какой периодичностью он должен ходить в парикмахерскую.
Гипербола. Применение гиперболы для определения местонахождения. Во время второй мировой войны использовались гиперболические навигационные системы. Штурман на борту самолёта или морского судна принимал радиосигналы от двух пар станций на берегу, которые испускали их одновременно. Используя разность времени между моментами приема сигналов от обеих станций, штурман строил две гиперболы, пересечение которых на карте позволяло определить место, где он находился.
Если спутник движется «с первой космической скоростью, то он будет вращаться вокруг Земли по круговой орбите».
При достижении «второй космической скорости, траектория спутника станет параболической и спутник никогда не вернётся в точку из которой он запущен».
При дальнейшем увеличении скорости, спутник будет двигаться по гиперболе и второй фокус появится с другой стороны (центры Земли всё время будут находиться в фокусе орбиты).
Тригонометрическая функция.
Различные колебания окружают нас на каждом шагу.
Механические колебания применяются для просеивания материалов на виброситах, безболезненного высверливания отверстий в зубах. Акустические колебания нужны для приема и воспроизведения звука, а электромагнитные – для радио, телевидения, связи с космическими ракетами. С помощью электромагнитных колебаний учеными были получены снимки обратной стороны Луны и вечно закрытой облаками Венеры. Колебания сопровождают и биологические процессы, например, слух, зрение, работу сердца и мозга.
Метеорологическая служба фиксирует изменения температуры, строя с помощью термографа график температуры.
Используя показания сейсмографов ( приборов, непрерывно фиксирующих колебания почвы и строящих специальные графики – сейсмограммы), геологи могут предсказать приближение землетрясение или цунами.
Врачи выявляют болезни сердца с помощью кардиографа, их называют кардиограммами.
Пословицы – это тоже отражение устойчивых закономерностей, выверенное многовековым опытом народа.
«Чем дальше в лес, тем больше дров»
(График представит количество дров как функцию пути).
«Каши маслом не испортишь». Качество каши можно рассматривать как функцию количества масла в ней. Согласно пословице эта функция не уменьшится с добавкой масла. Она, возможно, увеличится, но может оставаться и па прежнем уровне.
Известно также, что многие законы природы выражаются в виде квадратичной зависимости.
Свойство параболических зеркал используют при конструировании солнечных печей, солнечных электростанций, отражательных телескопов - рефлекторов. Параболы в природе - это и природный парк Ергаки, Западные Саяны, гора Парабола; радуга – природная парабола; наша галактика – вогнутая парабола.
Линeйная функция. Например, благодаря функции мы можем вычислить сколько раз в месяц нужно посещать парикмахерскую.
Если молодой человек хочет что бы у него длина волос была не длиннее 7 см, но и не короче 4 см, зная, что скорость роста волос 1,5 см в месяц, мы можем использовать график и увидеть с какой периодичностью он должен ходить в парикмахерскую.
Гипербола. Применение гиперболы для определения местонахождения. Во время второй мировой войны использовались гиперболические навигационные системы. Штурман на борту самолёта или морского судна принимал радиосигналы от двух пар станций на берегу, которые испускали их одновременно. Используя разность времени между моментами приема сигналов от обеих станций, штурман строил две гиперболы, пересечение которых на карте позволяло определить место, где он находился.
Если спутник движется «с первой космической скоростью, то он будет вращаться вокруг Земли по круговой орбите».
При достижении «второй космической скорости, траектория спутника станет параболической и спутник никогда не вернётся в точку из которой он запущен».
При дальнейшем увеличении скорости, спутник будет двигаться по гиперболе и второй фокус появится с другой стороны (центры Земли всё время будут находиться в фокусе орбиты).
Тригонометрическая функция.
Различные колебания окружают нас на каждом шагу.
Механические колебания применяются для просеивания материалов на виброситах, безболезненного высверливания отверстий в зубах. Акустические колебания нужны для приема и воспроизведения звука, а электромагнитные – для радио, телевидения, связи с космическими ракетами. С помощью электромагнитных колебаний учеными были получены снимки обратной стороны Луны и вечно закрытой облаками Венеры. Колебания сопровождают и биологические процессы, например, слух, зрение, работу сердца и мозга.
Метеорологическая служба фиксирует изменения температуры, строя с помощью термографа график температуры.
Используя показания сейсмографов ( приборов, непрерывно фиксирующих колебания почвы и строящих специальные графики – сейсмограммы), геологи могут предсказать приближение землетрясение или цунами.
Врачи выявляют болезни сердца с помощью кардиографа, их называют кардиограммами.
Пословицы – это тоже отражение устойчивых закономерностей, выверенное многовековым опытом народа.
«Чем дальше в лес, тем больше дров»
(График представит количество дров как функцию пути).
«Каши маслом не испортишь». Качество каши можно рассматривать как функцию количества масла в ней. Согласно пословице эта функция не уменьшится с добавкой масла. Она, возможно, увеличится, но может оставаться и па прежнем уровне.
Сергей Лихачёв
Спасибо! Очень понятно!