Естественные науки
Почему ЭРГОДИЧЕСКАЯ гипотеза в строгом смысле не состоятельна ?
Ответ в терминах ФРАКТАЛЬНОЙ ГЕОМЕТРИИ
Ууууу! Ой-ё-ё-ё!!!
Эргодическая гипотеза (от греч. érgon — работа и hodós — путь) в статистической физике, состоит в предположении, что средние по времени значения физических величин, характеризующих систему, равны их средним статистическим значениям; служит для обоснования статистической физики. Физические системы, для которых справедлива Э. г. , называются эргодическими. Точнее, в классической статистической механике равновесных систем Э. г. есть предположение о том, что средние по времени от функций, зависящих от координат и импульсов всех частиц системы (фазовых переменных) , взятые по траектории движения системы как точки в фазовом пространстве, равны средним статистическим по равномерному распределению фазовых точек в тонком (в пределе бесконечно тонком) слое энергии вблизи поверхности постоянной энергии. Такое распределение называется микроканоническим распределением Гиббса.
В квантовой статистической механике Э. г. есть предположение, что все состояния в тонком слое энергии равновероятны. Э. г. , т. о. , эквивалентна предположению о том, что замкнутая система может быть описана микроканоническим распределением Гиббса. Это один из основных постулатов равновесной статистической механики, т. к. на основании микроканонического распределения могут быть получены каноническое и большое каноническое распределения Гиббса (см. Гиббса распределение, Микроканонический ансамбль) .
В более узком смысле Э. г. — выдвинутое Л. Больцманом в 70-х гг. 19 в. предположение о том, что фазовая траектория замкнутой системы с течением времени проходит через любую точку поверхности постоянной энергии в фазовом пространстве. В такой форме Э. г. неверна, т. к. уравнения Гамильтона (см. Механики уравнения канонические) однозначно определяют касательную к фазовой траектории и не допускают ее самопересечения. Поэтому вместо больцмановской Э. г. была выдвинута квазиэргодическая гипотеза, в которой предполагается, что фазовые траектории замкнутой системы сколь угодно близко подходят к любой точке поверхности постоянной энергии.
Математическая эргодическая теория изучает, при каких условиях средние по времени для динамических систем равны средним статистическим. Подобные эргодические теоремы были доказаны американскими учеными Дж. Биркгофом и Дж. Нейманом. Согласно эргодической теореме Неймана, система эргодична, когда энергетическая поверхность не может быть разделена на такие конечные области, что если начальная фазовая точка находится в одной из них, то вся ее траектория будет целиком оставаться в этой области (т. н. свойство метрической интранзитивности) . Доказательство того, что реальные системы являются эргодическими, — очень сложная и еще не решенная проблема.
Что, легче стало от этого?
В квантовой статистической механике Э. г. есть предположение, что все состояния в тонком слое энергии равновероятны. Э. г. , т. о. , эквивалентна предположению о том, что замкнутая система может быть описана микроканоническим распределением Гиббса. Это один из основных постулатов равновесной статистической механики, т. к. на основании микроканонического распределения могут быть получены каноническое и большое каноническое распределения Гиббса (см. Гиббса распределение, Микроканонический ансамбль) .
В более узком смысле Э. г. — выдвинутое Л. Больцманом в 70-х гг. 19 в. предположение о том, что фазовая траектория замкнутой системы с течением времени проходит через любую точку поверхности постоянной энергии в фазовом пространстве. В такой форме Э. г. неверна, т. к. уравнения Гамильтона (см. Механики уравнения канонические) однозначно определяют касательную к фазовой траектории и не допускают ее самопересечения. Поэтому вместо больцмановской Э. г. была выдвинута квазиэргодическая гипотеза, в которой предполагается, что фазовые траектории замкнутой системы сколь угодно близко подходят к любой точке поверхности постоянной энергии.
Математическая эргодическая теория изучает, при каких условиях средние по времени для динамических систем равны средним статистическим. Подобные эргодические теоремы были доказаны американскими учеными Дж. Биркгофом и Дж. Нейманом. Согласно эргодической теореме Неймана, система эргодична, когда энергетическая поверхность не может быть разделена на такие конечные области, что если начальная фазовая точка находится в одной из них, то вся ее траектория будет целиком оставаться в этой области (т. н. свойство метрической интранзитивности) . Доказательство того, что реальные системы являются эргодическими, — очень сложная и еще не решенная проблема.
Что, легче стало от этого?
Похожие вопросы
- А почему "эргодическая гипотеза" все ещё гипотеза?
- Почему люди ищут во всём смысл? ^^
- Почему черная дыра - дыра? Строго говоря эта дыра - сфера. +
- В какую из гипотез происхождения Луны вы веруете?
- Почему при рассмотрении гипотез версию с инопланетянами оставляют на потом?
- Какая из этих трёх гипотез происхождения жизни вам наиболее близка и почему?
- Верна ли Гипотеза Римана?
- Теория струн ведь является по сути гипотезой?!
- Есть научная гипотеза, что 65 млн. лет назад астероид уничтожил динозавров на Земле. Вы верите этой гипотезе?
- Чем теория отличается от гипотезы?
легче не стало
ПОЧЕМУ траектории движения системы не смогут заполнить всё пространство её возможных состояний?