Естественные науки

Как рассчитать цену деления шкалы?

Как рассчитать цену деления шкалы?
Измерить какую-либо величину - значит сравнить ее с другой однородной величиной, принятой за единицу измерения. Приспособление, несущее единицу измерения, называется рабочей мерой. Обыкновенная линейка с делениями сантиметров и миллиметров, транспортир с делениями градусов - это примеры рабочих мер.

Шкала рабочей меры как правило равномерна; она может располагаться по прямой линии, по дуге окружности или по какой-либо другой кривой.

Отсчитывание по шкале рабочей меры производят по отсчетному индексу (начало и конец отрезка линии, сторона угла, штрих логарифмической линейки, стрелка весов и т. п.) . В общем случае отсчетный индекс (на рис. 3.1. - О. И. ) устанавливается между двумя штрихами шкалы; один из них называют младшим штрихом (мл.) , другой - старшим (ст.) .

Рис. 3.1

Отсчет N по шкале равен сумме двух величин:

N = Nмл + x, (3.1)

где Nмл - значение младшего штриха шкалы, Nмл = 55,
x - доля цены деления шкалы от младшего штриха до отсчетного индекса, x = 0,6.

Величину x можно получать разными способами, простейший из них - оценивание на глаз. Другой способ предполагает наличие специального отсчетного приспособления, назначение которого - измерять величину x с той или иной точностью. Известны следующие отсчетные приспособления: в машиностроении - нониус (верньер) , микрометр, микроскоп-микрометр, в оптическом приборостроении, штриховой и шкаловой микроскопы, оптический микрометр и т. д.

Верньер - одно из простейших отсчетных приспособлений. Его строят следующим образом: отрезок в n делений шкалы рабочей меры (основной шкалы) переносят на прилегающую поверхность и делят его там на ( n + 1 ) равных частей, получая шкалу верньера (рис. 3.2). Обозначим через λ цену деления основной шкалы и через μ - цену деления верньера; точностью верньера t называют разность

t = λ - μ. (3.2)

По построению λ * n = μ * ( n + 1 ), поэтому

Подставив это выражение в формулу (3.2), получим

(3.3)

то-есть, точность верньера равна цене деления основной шкалы, деленной на число делений верньера.

Рис. 3.2 Рис. 3.3

В практике очень часто встречается верньер на одну десятую, когда n = 9; точность такого верньера равна одной десятой деления основной шкалы.

Роль отсчетного индекса в верньере выполняет его нулевой штрих. Если он совмещен с каким-либо штрихом основной шкалы, то отсчет по основной шкале равен значению этого штриха. Все остальные штрихи верньера не совпадают со штрихами основной шкалы; первый штрих верньера отстоит от ближайшего штриха основной шкалы на величину λ - μ = t, второй штрих верньера отстоит от ближайшего штриха основной шкалы на 2*t, третий - на 3*t и т. д. Если сейчас сместить верньер относительно основной шкалы на величину t, то со штрихом основной шкалы совпадет 1-й штрих верньера; если сместить верньер на 2*t, то со штрихом основной шкалы совпадет 2-й штрих верньера и т. д. Если сместить верньер на величину k*t, то со штрихом основной шкалы совпадет k-й штрих верньера, поэтому формула отсчета N по верньеру имеет вид (рис. 3.3)

N = Nмл + k*t, (3.4)

где: Nмл - отсчет по младшему штриху основной шкалы,
k - номер штриха верньера, совпавшего со штрихом основной шкалы,
t - точность верньера.

Чтобы не умножать на t, верньер подписывают в единицах основной шкалы. Например, для угловой шкалы при t = 30" подпись первого штриха 30", подпись второго штриха 1' и т. д. Наблюдатель считывает с основной шкалы значение младшего штриха Nмл, находит на шкале верньера штрих, совпавший со штрихом лимба, и считывает его значение k*t; складываются эти два отсчета в уме.
ЮК
Юрий Костюченко
1 728
Лучший ответ
Мой почти тёзка ответил офигительно, добавить нечего, кроме одного: величину полного отклонения раздели на количество делений, и будет тебе счастье (при линейном распределении, конечно)