Естественные науки
Кто решит математическую задачу?
Условие задачи:Сколькими нулями заканчивается число 2008!=2008*2007*2006*...*3*2*1? (без использования калькуляторов)
От 1 до 2008 чисел, заканчивающихся на 5 ( 5, 15, 25, 35, 45, ..1995, 2005 ) (2005 - 5 )/10 + 1 = 201.
Чётных чисел больше, поэтому 201 ноль на конце уже обеспечен.
Чисел, оканчивающихся на 0 ( 10, 20, 30. 40....1990, 2000 ) всего ( 2000 - 10 )/10 + 1 = 200.
Это ещё дополнительные 200 нолей на конце.
Среди этих 200 чисел, оканчивающихся минимум на 2 ноля ( 100,200,300 ...1900,2000 ) = ( 2000 - 100 )/100 + 1 = 20.
И два числа, оканчивающихся на три 0 - 1000 и 2000.
Итого : 201 + 200 + 20 + 2 = 423 .
Так что ответ Астрона правильный, как ни странно, но голословный.
Но без калькулятора посчитать - легко !
Удачи !
Чётных чисел больше, поэтому 201 ноль на конце уже обеспечен.
Чисел, оканчивающихся на 0 ( 10, 20, 30. 40....1990, 2000 ) всего ( 2000 - 10 )/10 + 1 = 200.
Это ещё дополнительные 200 нолей на конце.
Среди этих 200 чисел, оканчивающихся минимум на 2 ноля ( 100,200,300 ...1900,2000 ) = ( 2000 - 100 )/100 + 1 = 20.
И два числа, оканчивающихся на три 0 - 1000 и 2000.
Итого : 201 + 200 + 20 + 2 = 423 .
Так что ответ Астрона правильный, как ни странно, но голословный.
Но без калькулятора посчитать - легко !
Удачи !
вроде 401 = 20*2+1
цифры 2, 5, 0 встречаются в 200 десятках (умножая на 2 и 5, по сути умножаем на 10, и еще раз умножаем на 10, т. е. умножая на цифры каждого десятка получаем два 0 в конце ) и еще в 2002 и 2005 (одно умножение на 10)
цифры 2, 5, 0 встречаются в 200 десятках (умножая на 2 и 5, по сути умножаем на 10, и еще раз умножаем на 10, т. е. умножая на цифры каждого десятка получаем два 0 в конце ) и еще в 2002 и 2005 (одно умножение на 10)
а с чего вы взяли что оно вообще на нули оканчивается?
проги есть скорее всего в нете, которые позволяют вычислить столь большой факториал.. .
Без калькулятора, спецпрог, это число вообще анрил вычислить
проги есть скорее всего в нете, которые позволяют вычислить столь большой факториал.. .
Без калькулятора, спецпрог, это число вообще анрил вычислить
Ответ 423 .
100! кончается на 21 ноль.
1000! 21х10 +1 = 211
2000! 2х211=422 нуля
2008! заканчивается на 422+1=423 нуля.
100! кончается на 21 ноль.
1000! 21х10 +1 = 211
2000! 2х211=422 нуля
2008! заканчивается на 422+1=423 нуля.
Похожие вопросы
- Кто решит математическую задачу?
- Математическая задача.
- Интересная математическая задача
- Прикладная математическая задача
- Есть ли у кого-нибудь математические задачи для 5 го класса на тему космоса, ракет и т.п. для Дня Космонавтики?
- Математическая задача не для слобонервных
- Кто создал первую математическую задачу и когда. только пишите подробно, плиз))))))
- Математическая задача про комету.
- Какие математические задачи сейчас нуждаются в решении? Через пару дней уеду в деревню, делать будет абсолютно нечего)
- Логическая математическая задача, кому интересно заходите условие внутри.