Домашние задания: Другие предметы

история обыкновенных дробей

Обыкновенные дроби

Дроби возникли не как результат деления целых чисел. Они возникли в процессе изменения, как определенные части некоторых определенных мер. Раньше дроби считались самым трудным разделом математики. Единой записи дробей, как и целых чисел не было. В древнем Египте были дроби только с числителем, равным единице, дроби вида 1/n, так называемые аликвотные дроби и еще была дробь 2/3. Дроби с числителем, отличным от единицы записывали как сумму аликвотных дробей например: 2/5 = 1/5 + 1/5, 2/7 = 1/4 + 1/28. Для дробей был единый знак в виде овала, этот овал выродился в точку, и . дробь выражалась знаком знаменателя с точкой над ним (1/3 = 3 ). Диофант (3 век н. э. ) дроби записывал почти также как и мы, только над чертой писал знаменатель, а под чертой - числитель или записывал числитель, частица и затем знаменатель. Дробная черта начала применяться в 18 веке, но в постоянное употребление вошла только в 16 веке. Все народы называли дробь "ломаным числом". Среди чисел существует такое совершенство и согласие, что нам надо размышлять дни и ночи над их удивительной закономерностью… Стевин Термин "рациональное" (число) происходит от латинского слова ratio - отношение, которое является переводом греческого слова "логос.
Дроби возникли в глубокой древности так как натуральные числа не могли с необходимой точностью давать ответ при вычислениях и измерениях. Сначала появились дроби с числителем 1. Все остальные выражали через них. Человек умеющий выполнять дейстия с дробями был как правило жрецом, т. е. считался почти магом. Современнное обозначение дробей пришло из Древней Индии. Только в начале запись обыкновенной дроби не содержала дробной черты. Черта дроби получила свое распространение только около 400 лет назад. Названия числитель и знаменатель ввел в 18 веке Максим Плануд - греческий монах.
Регина Альхамова
Регина Альхамова
5 888
Лучший ответ
Дроби появились в глубокой древности. При разделе добычи, при измерениях величин, да и в других похожих случаях люди встретились с необходимостью ввести дроби. В средние века, как и в древности, учение о дробях считалось самым трудным разделом арифметики. Римский оратор и писатель Цицерон говорил, что без знаний дробей никто не может признаваться знающим арифметику. А у немцев сохранилась такая поговорка “Попасть в дроби”, что означает попасть в трудное положение. Трудности при изучении дробей обусловлены тем, что надо было заучивать таблицы и умножения, и сложения дробей зачастую без понимания и выяснения сущности этих действий.
У многих народов дроби называли ломаными числами. Этим названием пользуется и автор первого русского учебника по математике Л. Ф. Магницкий.
Интересное и меткое “арифметическое” сравнение делал Л. Н. Толстой. Он говорил, что человек подобен дроби, числитель которой есть то, что человек представляет собой, а знаменатель-то, что он думает о себе. Чем большего человек о себе мнения, тем больше знаменатель, а значит, тем меньше дробь.
Древние египтяне уже знали, как поделить 2 предмета на троих, для этого числа -2/3- у них был специальный значок. Между прочим, это была единственная дробь в обиходе египетских писцов, у которой в числителе не стояла единица - все остальные дроби непременно имели в числителе единицу (так называемые основные дроби) : 1/2; 1/3; 1/28; ...Если египтянину нужно было использовать другие дроби, он представлял их в виде суммы основных дробей. Например, вместо 8/15 писали 1/3+1/5. Иногда это бывало удобно. В папирусе Ахмеса есть задача :
"Разделить 7 хлебов между 8 людьми". Если резать каждый хлеб на 8 частей, придётся провести 49 разрезов.
А по-египетски эта задача решалась так: Дробь 7/8 записывали в виде долей: 1/2+1/4+1/8. Значит каждому человеку надо дать полхлеба, четверть хлеба и восьмушку хлеба; поэтому четыре хлеба разрезали пополам, два хлеба- на 4 части и один хлеб на 8 долей, после чего каждому дали его часть.
Но складывать такие дроби было неудобно. Ведь в оба слагаемых могут входить одинаковые доли, и тогда при сложении появится дробь вида 2/n. А таких дробей египтяне не допускали. Поэтому, папирус Ахмеса начинается с таблицы, в которой все дроби такого вида от 2/5 до 2/99 записаны в виде суммы долей.
Умели египтяне также умножать и делить дроби. Но для умножения приходилось умножать доли на доли, а потом, быть может, снова использовать таблицу. Ещё сложнее обстояло с делением.
В Древнем Китае уже пользовались десятичной системой мер, обозначали дробь словами, используя меры длины чи: цуни, доли, порядковые, шерстинки, тончайшие, паутинки. Дробь вида 2,135436 выглядела так: 2 чи, 1 цунь, 3 доли, 5 порядковых, 4 шерстинки, 3 тончайших, 6 паутинок. Так записывались дроби на протяжении двух веков, а в V веке китайский ученый Цзю-Чун-Чжи принял за единицу не чи, а чжан = 10 чи, тогда эта дробь выглядела так: 2 чжана, 1 чи, 3 цуня, 5 долей, 4 порядковых, 3 шерстинки, 6 тончайших, 0 паутинок.

Предшественниками десятичных дробей являлись шестидесятеричные дроби древних вавилонян. Некоторые элементы десятичной дроби встречаются в трудах многих ученых Европы в 12, 13, 14 веках.

Десятичную дробь с помощью цифр и определенных знаков попытался записать арабский математик ал-Уклисиди в X веке. Свои мысли по этому поводу он выразил в "Книге разделов об индийской арифметике".

В XV веке, в Узбекистане, вблизи города Самарканда жил математик и астроном Джемшид Гиясэддин ал-Каши (дата рождения неизвестна) . Он наблюдал за движением звезд, планет и Солнца, в этой работе ему необходимы были десятичные дроби. Ал-Каши написал книгу "Ключ к арифметике" (была издана в 1424 году) , в которой он показал запись дроби в одну строку числами в десятичной системе и дал правила действия с ними. Ученый пользовался несколькими способами написания дроби: то он применял вертикальную черту, то чернила черного и красного цветов. Но этот труд до европейских ученых своевременно не дошел.

Примерно в это же время математики Европы также пытались найти удобную запись десятичной дроби. В книге "Математический канон" французского математика Ф. Виета (1540-1603) десятичная дробь записана так 2 135436 - дробная часть и подчеркивалась и записывалась выше строки целой части числа.

В 1585 г. , независимо от ал-Каши, фламандский ученый Симон Стевин (1548-1620) сделал важное открытие, о чем написал в своей книге "Десятая" (на французском языке "De Thiende, La Disme"). Эта маленькая работа (всего 7 страниц) содержала объяснение записи и правил действий с десятичными дробями. Он писал цифры дробного числа в одну строку с цифрами целого числа, при этом нумеруя их. Например, число 12,761 записывалось так:

12076112

или число 0,3752 записывалось так:

3752.

Именно Стевина и считают изобретателем десятичных дробей.

Запятая в записи дробей впервые встречается в 1592г. , а в 1617г. шотландский математик Джон Непер предложил отделять десятичные знаки от целого числа либо запятой, либо точкой.

Современную запись, т. е. отделение целой части запятой, предложил Кеплер (1571) - (1630 гг.) .

В странах, где говорят по-английски (Англия, США, Канада и др.) , и сейчас вместо запятой пишут точку, например: 2.3 и читают: два точка три.
Дроби появились в глубокой древности. При разделе добычи, при измерениях величин, да и в других похожих случаях люди встретились с необходимостью ввести дроби. В средние века, как и в древности, учение о дробях считалось самым трудным разделом арифметики. Римский оратор и писатель Цицерон говорил, что без знаний дробей никто не может признаваться знающим арифметику. А у немцев сохранилась такая поговорка “Попасть в дроби”, что означает попасть в трудное положение. Трудности при изучении дробей обусловлены тем, что надо было заучивать таблицы и умножения, и сложения дробей зачастую без понимания и выяснения сущности этих действий.
У многих народов дроби называли ломаными числами. Этим названием пользуется и автор первого русского учебника по математике Л. Ф. Магницкий.
Интересное и меткое “арифметическое” сравнение делал Л. Н. Толстой. Он говорил, что человек подобен дроби, числитель которой есть то, что человек представляет собой, а знаменатель-то, что он думает о себе. Чем большего человек о себе мнения, тем больше знаменатель, а значит, тем меньше дробь.
Древние египтяне уже знали, как поделить 2 предмета на троих, для этого числа -2/3- у них был специальный значок. Между прочим, это была единственная дробь в обиходе египетских писцов, у которой в числителе не стояла единица - все остальные дроби непременно имели в числителе единицу (так называемые основные дроби) : 1/2; 1/3; 1/28; ...Если египтянину нужно было использовать другие дроби, он представлял их в виде суммы основных дробей. Например, вместо 8/15 писали 1/3+1/5. Иногда это бывало удобно. В папирусе Ахмеса есть задача :
"Разделить 7 хлебов между 8 людьми". Если резать каждый хлеб на 8 частей, придётся провести 49 разрезов.
А по-египетски эта задача решалась так: Дробь 7/8 записывали в виде долей: 1/2+1/4+1/8. Значит каждому человеку надо дать полхлеба, четверть хлеба и восьмушку хлеба; поэтому четыре хлеба разрезали пополам, два хлеба- на 4 части и один хлеб на 8 долей, после чего каждому дали его часть.
Но складывать такие дроби было неудобно. Ведь в оба слагаемых могут входить одинаковые доли, и тогда при сложении появится дробь вида 2/n. А таких дробей египтяне не допускали. Поэтому, папирус Ахмеса начинается с таблицы, в которой все дроби такого вида от 2/5 до 2/99 записаны в виде суммы долей.
Умели египтяне также умножать и делить дроби. Но для умножения приходилось умножать доли на доли, а потом, быть может, снова использовать таблицу. Ещё сложнее обстояло с делением.
Обыкновенные дроби

Дроби возникли не как результат деления целых чисел. Они возникли в процессе изменения, как определенные части некоторых определенных мер. Раньше дроби считались самым трудным разделом математики. Единой записи дробей, как и целых чисел не было. В древнем Египте были дроби только с числителем, равным единице, дроби вида 1/n, так называемые аликвотные дроби и еще была дробь 2/3. Дроби с числителем, отличным от единицы записывали как сумму аликвотных дробей например: 2/5 = 1/5 + 1/5, 2/7 = 1/4 + 1/28. Для дробей был единый знак в виде овала, этот овал выродился в точку, и . дробь выражалась знаком знаменателя с точкой над ним (1/3 = 3 ). Диофант (3 век н. э. ) дроби записывал почти также как и мы, только над чертой писал знаменатель, а под чертой - числитель или записывал числитель, частица и затем знаменатель. Дробная черта начала применяться в 18 веке, но в постоянное употребление вошла только в 16 веке. Все народы называли дробь "ломаным числом". Среди чисел существует такое совершенство и согласие, что нам надо размышлять дни и ночи над их удивительной закономерностью… Стевин Термин "рациональное" (число) происходит от латинского слова ratio - отношение, которое является переводом греческого слова "логос.
Дроби возникли в глубокой древности так как натуральные числа не могли с необходимой точностью давать ответ при вычислениях и измерениях. Сначала появились дроби с числителем 1. Все остальные выражали через них. Человек умеющий выполнять дейстия с дробями был как правило жрецом, т. е. считался почти магом. Современнное обозначение дробей пришло из Древней Индии. Только в начале запись обыкновенной дроби не содержала дробной черты. Черта дроби получила свое распространение только около 400 лет назад. Названия числитель и знаменатель ввел в 18 веке Максим Плануд - греческий монах
мудрец