Домашние задания: Другие предметы
Как разложить на множители многочлен 2x^3+5x^2-x-1
=2x^3+6x^2-x^2+2x-3x-1=2x(x^2+3x+1)-(x^2+3x+1)=(2x-1)(x^2+3x+1)
Вынесение общего множителя за скобки. Это преобразование является непосредственным следствием распределительного закона ac + bc = c(a + b)
Пример. Разложить многочлен на множители 12 y 3 – 20 y 2. Решение. Имеем: 12 y 3 – 20 y 2 = 4 y 2 · 3 y – 4 y 2 · 5 = 4 y 2 (3 y – 5). Ответ. 4 y 2(3 y – 5).
Использование формул сокращенного умножения. Формулы сокращённого умножения позволяют довольно эффективно представлять многочлен в форме произведения.
Пример. Разложить на множители многочлен x 4 – 1. Решение. Имеем: x 4 – 1 = ( x 2 ) 2 – 1 2 = ( x 2 – 1)( x 2 + 1) = ( x 2 – 1 2 )( x 2 + 1) = ( x + 1)( x – 1)( x 2 + 1). Ответ. ( x + 1)( x – 1)( x 2 + 1).
Способ группировки. Этот способ заключается в том, что слагаемые многочлена можно сгруппировать различными способами на основе сочетательного и переместительного законов. На практике он применяется в тех случаях, когда многочлен удается представить в виде пар слагаемых таким образом, чтобы из каждой пары можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку и исходный многочлен окажется представленным в виде произведения.
Пример. Разложить на множители многочлен x 3 – 3 x 2 y – 4 xy + 12 y 2. Решение. Сгруппируем слагаемые следующим образом:
x 3 – 3 x 2 y – 4 xy + 12 y 2 = ( x 3 – 3 x 2 y ) – (4 xy – 12 y 2 ). В первой группе вынесем за скобку общий множитель x 2, а во второй − 4 y . Получаем:
( x 3 – 3 x 2 y ) – (4 xy – 12 y 2 ) = x 2 ( x – 3 y ) – 4 y ( x – 3 y ). Теперь общий множитель ( x – 3 y ) также можно вынести за скобки:
x 2 ( x – 3 y ) – 4 y ( x – 3 y ) = ( x – 3 y )( x 2 – 4 y ). Ответ. ( x – 3 y )( x 2 – 4 y ).
Способ выделения полного квадрата. Метод выделения полного квадрата является одним из наиболее эффективных методов разложения на множители. Суть его состоит в выделении полного квадрата и последующего применения формулы разности квадратов.
Пример. Разложить на множители многочлен x 4 + 4 x 2 – 1. Решение. Имеем $$x^{4} +4x^{2}- 1 = x^{4} +2 \cdot 2x^{2} + 4 - 4 - 1 = (x^{2} + 2)^{2} - 5 = (x^{2} + 2 -\sqrt{5})(x^{2} + 2 -\sqrt{5})$$.
Метод неопределенных коэффициентов. Суть метода неопределённых коэффициентов состоит в том, что вид сомножителей, на которые разлагается данный многочлен, угадывается, а коэффициенты этих сомножителей (также многочленов) определятся путём перемножения сомножителей и приравнивания коэффициентов при одинаковых степенях переменной. Теоретической основой метода являются следующие утверждения.
Два многочлена равны тогда и только тогда, когда равны их коэффициенты.
Любой многочлен третьей степени имеет хотя бы один действительный корень, а потому разлагается в произведение линейного и квадратичного сомножителя.
Любой многочлен четвёртой степени разлагается в произведение многочленов второй степени.
Пример. Разложить на множители многочлен 3 x 3 – x 2 – 3 x + 1.
Решение. Поскольку многочлен третьей степени разлагается в произведение линейного и квадратичного сомножителей, то будем искать многочлены x – p и ax 2 + bx + c такие, что справедливо равенство 3 x 3 – x 2 – 3 x + 1 = ( x – p )( ax 2 + bx + c ) = ax 3 + ( b – ap ) x 2 + ( c – bp ) x – pc . Приравнивая коэффициенты при одинаковых степенях в левой и правой частях этого равенства, получаем систему четырех уравнений для определения четырех неизвестных коэффициентов:
$$\cases {{a = 3}\cr{b - ap = -1}\cr{c - bp = -3}\cr{-pc = 1}}$$.
Решая эту систему, получаем: a = 3, p = –1, b = 2, c = –1. Итак, многочлен 3 x 3 – x 2 – 3 x + 1 разлагается на множители: 3 x 3 – x 2 – 3 x + 1 = ( x – 1)(3 x 2 + 2 x – 1).
mobil 1 esp formula 5w 30 mobil 1 esp formula 5w30
Пример. Разложить многочлен на множители 12 y 3 – 20 y 2. Решение. Имеем: 12 y 3 – 20 y 2 = 4 y 2 · 3 y – 4 y 2 · 5 = 4 y 2 (3 y – 5). Ответ. 4 y 2(3 y – 5).
Использование формул сокращенного умножения. Формулы сокращённого умножения позволяют довольно эффективно представлять многочлен в форме произведения.
Пример. Разложить на множители многочлен x 4 – 1. Решение. Имеем: x 4 – 1 = ( x 2 ) 2 – 1 2 = ( x 2 – 1)( x 2 + 1) = ( x 2 – 1 2 )( x 2 + 1) = ( x + 1)( x – 1)( x 2 + 1). Ответ. ( x + 1)( x – 1)( x 2 + 1).
Способ группировки. Этот способ заключается в том, что слагаемые многочлена можно сгруппировать различными способами на основе сочетательного и переместительного законов. На практике он применяется в тех случаях, когда многочлен удается представить в виде пар слагаемых таким образом, чтобы из каждой пары можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку и исходный многочлен окажется представленным в виде произведения.
Пример. Разложить на множители многочлен x 3 – 3 x 2 y – 4 xy + 12 y 2. Решение. Сгруппируем слагаемые следующим образом:
x 3 – 3 x 2 y – 4 xy + 12 y 2 = ( x 3 – 3 x 2 y ) – (4 xy – 12 y 2 ). В первой группе вынесем за скобку общий множитель x 2, а во второй − 4 y . Получаем:
( x 3 – 3 x 2 y ) – (4 xy – 12 y 2 ) = x 2 ( x – 3 y ) – 4 y ( x – 3 y ). Теперь общий множитель ( x – 3 y ) также можно вынести за скобки:
x 2 ( x – 3 y ) – 4 y ( x – 3 y ) = ( x – 3 y )( x 2 – 4 y ). Ответ. ( x – 3 y )( x 2 – 4 y ).
Способ выделения полного квадрата. Метод выделения полного квадрата является одним из наиболее эффективных методов разложения на множители. Суть его состоит в выделении полного квадрата и последующего применения формулы разности квадратов.
Пример. Разложить на множители многочлен x 4 + 4 x 2 – 1. Решение. Имеем $$x^{4} +4x^{2}- 1 = x^{4} +2 \cdot 2x^{2} + 4 - 4 - 1 = (x^{2} + 2)^{2} - 5 = (x^{2} + 2 -\sqrt{5})(x^{2} + 2 -\sqrt{5})$$.
Метод неопределенных коэффициентов. Суть метода неопределённых коэффициентов состоит в том, что вид сомножителей, на которые разлагается данный многочлен, угадывается, а коэффициенты этих сомножителей (также многочленов) определятся путём перемножения сомножителей и приравнивания коэффициентов при одинаковых степенях переменной. Теоретической основой метода являются следующие утверждения.
Два многочлена равны тогда и только тогда, когда равны их коэффициенты.
Любой многочлен третьей степени имеет хотя бы один действительный корень, а потому разлагается в произведение линейного и квадратичного сомножителя.
Любой многочлен четвёртой степени разлагается в произведение многочленов второй степени.
Пример. Разложить на множители многочлен 3 x 3 – x 2 – 3 x + 1.
Решение. Поскольку многочлен третьей степени разлагается в произведение линейного и квадратичного сомножителей, то будем искать многочлены x – p и ax 2 + bx + c такие, что справедливо равенство 3 x 3 – x 2 – 3 x + 1 = ( x – p )( ax 2 + bx + c ) = ax 3 + ( b – ap ) x 2 + ( c – bp ) x – pc . Приравнивая коэффициенты при одинаковых степенях в левой и правой частях этого равенства, получаем систему четырех уравнений для определения четырех неизвестных коэффициентов:
$$\cases {{a = 3}\cr{b - ap = -1}\cr{c - bp = -3}\cr{-pc = 1}}$$.
Решая эту систему, получаем: a = 3, p = –1, b = 2, c = –1. Итак, многочлен 3 x 3 – x 2 – 3 x + 1 разлагается на множители: 3 x 3 – x 2 – 3 x + 1 = ( x – 1)(3 x 2 + 2 x – 1).
mobil 1 esp formula 5w 30 mobil 1 esp formula 5w30
Похожие вопросы
- Помогите решить кубическое уравнение x^3-3x^2+x+1=0
- Какое решение такого уравнения 2x^3+7x^2+5x+1=0? Три корня должно быть.
- Алгебраа. решите уравнение ..x^3-3x^2-x+3=0 решите неравенство -2x^2-5x больше либо равно -3
- Помогите решить. Уравнение. Помогите решить (x-1)(x^2+x+1)-x(x^2-x^3)=2x^2
- Помогите найти значение аргумента x, при котором достигается минимум функции y (x)=x^3-2x^2+x-1
- Людям, которые очень хорошо знают алгебру. ЗНАТОКАМ АЛГЕБРЫ. Помоогите решить уравнение. x^4-2x^3-13x^2-2x+1=0
- РЕШИТЬ УРАВНЕНИЯ пожалуйста хотя бы один 1)√x-x=-12 2)x+√x=2(x-1) 3)√x-1=x-3 4)√6+x-x^2=1-x
- Принцип решения неравенства (5x-3)(4-)/(2+x) >либо равно 0? Можно обе части ужножить на (2+x)?
- Решить уравнение: 2(x^2 + x + 1)^2 - 7(x - 1)^2 = 13(x^3 - 1)
- Алгебра решить систему уравнений 1)xy^2=-36 x^2y=-48 2) 2^x+1*3^y+2=2 x-y=2