Дополнительное образование

теорема о нахождении площади ромба) Помогите пожалуйста, оформить теорему. с дано и доказательством. S=1/2*BD*AC

Ромб - это параллелограмм, у которого все стороны равны.
Как частный случай параллелограмма ромб имеет все его свойства, но есть и частные. Запишем их:

Диагонали ромба перпендикулярны.
Для доказательства достаточно увидеть, что все четыре треугольника, на которые ромб разбивается диагоналями, равны по трем сторонам (стороны равны, диагонали точкой пересечения делятся пополам) . Т. е. углы АОВ, ВОС, СОD, DОА равны, а в сумме они составляют 360 градусов, поэтому каждый из них по 90.

Диагонали ромба являются биссектрисами его углов.
Для доказательства достаточно увидеть, что все четыре треугольника, на которые ромб разбивается диагоналями, равны по трем сторонам (стороны равны, диагонали точкой пересечения делятся пополам) . Поэтому равны и соответственные углы. Например, РАВО=РСВО

Признаки, с помощью которых можно доказать, чтo параллелограмм - ромб:

Если в параллелограмме диагонали перпендикулярны, то он - ромб.
Для доказательства достаточно увидеть, что все четыре треугольника, на которые ромб разбивается диагоналями, прямоугольные и равны по двум катетам (диагонали ромба точкой пересечения делятся пополам) . Поэтому равны и их гипотенузы, т. е. все стороны параллелограмма равны между собой. Ромб - это параллелограмм, у которого все стороны равны.
Как частный случай параллелограмма ромб имеет все его свойства, но есть и частные. Запишем их:

Диагонали ромба перпендикулярны.
Для доказательства достаточно увидеть, что все четыре треугольника, на которые ромб разбивается диагоналями, равны по трем сторонам (стороны равны, диагонали точкой пересечения делятся пополам) . Т. е. углы АОВ, ВОС, СОD, DОА равны, а в сумме они составляют 360 градусов, поэтому каждый из них по 90.

Диагонали ромба являются биссектрисами его углов.
Для доказательства достаточно увидеть, что все четыре треугольника, на которые ромб разбивается диагоналями, равны по трем сторонам (стороны равны, диагонали точкой пересечения делятся пополам) . Поэтому равны и соответственные углы. Например, РАВО=РСВО

Признаки, с помощью которых можно доказать, чтo параллелограмм - ромб:

Если в параллелограмме диагонали перпендикулярны, то он - ромб.
Для доказательства достаточно увидеть, что все четыре треугольника, на которые ромб разбивается диагоналями, прямоугольные и равны по двум катетам (диагонали ромба точкой пересечения делятся пополам) . Поэтому равны и их гипотенузы, т. е. все стороны параллелограмма равны между собой.

Если в параллелограмме диагонали являются биссектрисами его углов, то он - ромб.
Для доказательства достаточно увидеть, что все четыре треугольника, на которые ромб разбивается диагоналями, равны по стороне и двум углам (противоположные углы ромба равны, значит и их половины равны) . Для треугольников АВО и СВО - ВО - общая, углы АВО и СВО равны и ВАО и ВСО равны (как половины противоположных углов) . Поэтому равны и их соответственные стороны, т. е. все стороны параллелограмма равны между собой.

Признаки, с помощью которых можно доказать, что данный четырехугольник - ромб можно вывести сложив 5 признаков из темы параллелограмм и 2 признака из этой темы. Всего получится 10 признаков. Но легче доказать сначала, что четырехугольник - параллелограмм, а затем доказать, что он - робм, используя эти признаки.

Первая формула является следствием формулы площади параллелограмма (с учетом равенства сторон) , а вторая - следствием формулы площади четырехугольника (с учетом угла между диагоналями) .

Площадь ромба равна произведению квадрата его стороны и синуса острого угла.

Площадь ромба равна половине произведения диагоналей.

http://geometr.info/geometriia/romb.html

http://e-science.ru/math/theory/?t=296
ИБ
Ирина Барышникова
67 510
Лучший ответ
Посмотри здесь :http://www.pm298.ru/geom3.php.
Kuznestova Natasha
Kuznestova Natasha
23 131

Похожие вопросы