13
{x^2+y^2+2y=9
{y=3x-1
x^2+(3x-1)^2+2(3x-1)=9
x^2+9x^2+6x+1-6x-2-9=0
10x^2-10=0
x^2=1
x1=-1
x2=1
y1=-1*3-1=-4
y2=1*3-1=2
ответ: (-1,-4) (1,2)
14
3x^2+x-5=0
D=1+60=61
x1=(-1+√61)/6
x2=(-1-√61)/6
15
9x^2-2x+1/9=0
(3x-1/3)^2=0
3x-1/3=0
3x=1/3
x=1/9
16
-x^2+x-5=0
x^2-x+5=0
D=1-20=-19 <0 действительных корней нет
13)
{ x^2 + y^2 + 2xy = 9
{ 3x - y = 1
=>
{ (x + y)^2 = 9 ------> { (x + y)^2 - 3^2 = 0
{ y = 3x - 1
=>
[(x+y) + 3] * [(x+y) - 3] = 0
[(x + (3x-1)) + 3] * [(x + (3x-1)) - 3] = 0
(4x + 2) * (4x - 4) = 0
2*4 * (2x+1)*(x-1) = 0
(2x+1) = 0 --------> x = - 1/2
(x-1) = 0 -----------> x = 1
14)
3x^2 + x - 5 = 0
решаются по стандартной формуле:
ax^2 + bx + c = 0
x(1,2) = [ -b + - V(b^2 - 4ac)] / 2a
x1 = [ -b - V(b^2 - 4ac)] / 2a
x2 = [ -b + V(b^2 - 4ac)] / 2a
где: a = 3; b = 1; c = -5
15)
9x^2 - 2x + 1/9 = 0
81x^2 - 18x + 1 = 0
(9x)^2 - 2*(9x)*1 + 1 = 0
(9x - 1)^2 = 0
9x = 1
x = 1/9
16)
- x^2 + x - 5 = 0 -----> (*) на (-1)
x^2 - x + 5 = 0
x(1,2) = [ 1 + - V(1 - 4*1*5)] / 2 = [1 + - V(-19)]/2
D < 0 ----> действительных корней нет
x2 = [ -b + V(b^2 - 4ac)] / 2a