Здраствуйте. Такой вопрос возник, никак немогу определится с этим и опять же незнаю как это называется и есть ли вообще чтото подобное.
К примеру вы бросаете монетку, шанс что выпадет орел или решка 50%. Шанс каждого броска не зависит от прошлых бросков. и так как называется, что с каждым новым броском вероятность выпадения иного исхода, тоесть если была решка, выпадет орел, растет. Тоесть если вы сделали 10 бросков и 5 из них орел а 5 решка, т конечно орел может выпасть и 10 раз подряд, и 100 раз подряд, но какая вероятность что это будет? 0,000001 ???
Как все это называется. надеюсь вы меня поняли) заранее спасибо!
Гуманитарные науки
Теория вероятности или как это называется
Это называется "теория вероятностей и математическая статистика".
Поступишь в ВУЗ, там проходят.
Поступишь в ВУЗ, там проходят.
Чувак! Это называется, што если бросил десять раз, то наибольшая вероятность будет у 5-5. У 6-4 поменьше, у 7-3 ишо поменьше и. т. д... у 10-0 совсем маленькая.
А вероятность выпадения орла и решки всегда одна и та же.
А вероятность выпадения орла и решки всегда одна и та же.
это точно не гуманитарные науки (
Способ 1. Классическое определение вероятности
Для начала надо вспомнить саму формулу, по которой будем считать. Итак, вероятность находится как P=m/nP=m/n, где nn - число всех равновозможных элементарных исходов нашего случайного эксперимента с подбрасыванием, а mm - число тех исходов, которые благоприятствуют событию (то есть тому, что указано в условии задачи). Но как найти эти загадочные исходы? Проще всего пояснить на примерах.
Пример 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.
Итак, монету бросают дважды. Если обозначить буквой Р выпадение решки (цифры), а буквой О - выпадение орла (герба), то все возможные выпадения можно записать так: РР, ОР, РО и ОО (соответствено, выпали две решки, орел потом решка, решка потом орел и два орла). Подсчитываем число этих комбинаций и получаем n=4n=4. Теперь из них надо отобрать только те, что удовлетворяют условию "орел выпадет ровно один раз", это комбинации ОР и РО и их ровно m=2m=2. Тогда искомая вероятность равна P=2/4=1/2=0.5P=2/4=1/2=0.5. Готово!
Пример 2. Дважды бросают симметричную монету. Найти вероятность того, что оба раза выпала одна сторона.
Так как монета снова подбрасывается два раза, множество всех элементарных исходов эксперимента (или комбинаций, как мы их называем здесь для удобства), точно такое же: РР, ОР, РО и ОО, n=4n=4. А вот условию "оба раза выпала одна сторона" удовлетворяют другие комбинации: РР и ОО, откуда m=2m=2. Нужная вероятность равна P=2/4=1/2=0.5P=2/4=1/2=0.5.
Как видим, все довольно просто. Перейдем к чуть более сложной задаче.
Пример 3. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.
Снова применим формулу классической вероятности. Шаг первый - выписываем все возможные комбинации уже для 3 бросков! Это будут: ООО, ООР, ОРО, ОРР, РОО, РОР, РРО, РРР. Смотри-ка, бросков всего на один больше, а комбинаций возможных уже n=8n=8 (кстати, они находятся по формуле n=2kn=2k, где kk - число бросков монеты).
Теперь из этого списка надо оставить только те комбинации, где О встречается 2 раза, то есть: ООР, ОРО, РОО, их будет m=3m=3. Тогда вероятность события P=m/n=3/8=0.375P=m/n=3/8=0.375.
Взяли разгон и переходим к 4 монетам.
Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.
Приступаем к вычислению. Шаг первый - выписываем все возможные комбинации для 4 бросков монеты. Чтобы проверить себя, сразу подсчитаем, что их должно получиться n=24=16n=24=16 штук! Вот они:
OOOO, OOOP, OOPO, OOPP, OPOO, OPOP, OPPO, OPPP,
POOO, POOP, POPO, POPP, PPOO, PPOP, PPPO, PPPP.
Теперь выбираем те, где герб (он же орел, он же буква О) встречается 2 или 3 раза: OOOP, OOPO, OOPP, OPOO, OPOP, OPPO, POOO, POOP, POPO, PPOO,
их будет m=10m=10. Тогда вероятность равна P=m/n=10/16=5/8=0.625P=m/n=10/16=5/8=0.625.
Думаю, к этому времени вы уже поняли суть метода и сможете сами решить задачи, где бросаются 2-3-4 монеты и орел не выпадает ни разу, или решка ровно один раз и т. п.
Для начала надо вспомнить саму формулу, по которой будем считать. Итак, вероятность находится как P=m/nP=m/n, где nn - число всех равновозможных элементарных исходов нашего случайного эксперимента с подбрасыванием, а mm - число тех исходов, которые благоприятствуют событию (то есть тому, что указано в условии задачи). Но как найти эти загадочные исходы? Проще всего пояснить на примерах.
Пример 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.
Итак, монету бросают дважды. Если обозначить буквой Р выпадение решки (цифры), а буквой О - выпадение орла (герба), то все возможные выпадения можно записать так: РР, ОР, РО и ОО (соответствено, выпали две решки, орел потом решка, решка потом орел и два орла). Подсчитываем число этих комбинаций и получаем n=4n=4. Теперь из них надо отобрать только те, что удовлетворяют условию "орел выпадет ровно один раз", это комбинации ОР и РО и их ровно m=2m=2. Тогда искомая вероятность равна P=2/4=1/2=0.5P=2/4=1/2=0.5. Готово!
Пример 2. Дважды бросают симметричную монету. Найти вероятность того, что оба раза выпала одна сторона.
Так как монета снова подбрасывается два раза, множество всех элементарных исходов эксперимента (или комбинаций, как мы их называем здесь для удобства), точно такое же: РР, ОР, РО и ОО, n=4n=4. А вот условию "оба раза выпала одна сторона" удовлетворяют другие комбинации: РР и ОО, откуда m=2m=2. Нужная вероятность равна P=2/4=1/2=0.5P=2/4=1/2=0.5.
Как видим, все довольно просто. Перейдем к чуть более сложной задаче.
Пример 3. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.
Снова применим формулу классической вероятности. Шаг первый - выписываем все возможные комбинации уже для 3 бросков! Это будут: ООО, ООР, ОРО, ОРР, РОО, РОР, РРО, РРР. Смотри-ка, бросков всего на один больше, а комбинаций возможных уже n=8n=8 (кстати, они находятся по формуле n=2kn=2k, где kk - число бросков монеты).
Теперь из этого списка надо оставить только те комбинации, где О встречается 2 раза, то есть: ООР, ОРО, РОО, их будет m=3m=3. Тогда вероятность события P=m/n=3/8=0.375P=m/n=3/8=0.375.
Взяли разгон и переходим к 4 монетам.
Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.
Приступаем к вычислению. Шаг первый - выписываем все возможные комбинации для 4 бросков монеты. Чтобы проверить себя, сразу подсчитаем, что их должно получиться n=24=16n=24=16 штук! Вот они:
OOOO, OOOP, OOPO, OOPP, OPOO, OPOP, OPPO, OPPP,
POOO, POOP, POPO, POPP, PPOO, PPOP, PPPO, PPPP.
Теперь выбираем те, где герб (он же орел, он же буква О) встречается 2 или 3 раза: OOOP, OOPO, OOPP, OPOO, OPOP, OPPO, POOO, POOP, POPO, PPOO,
их будет m=10m=10. Тогда вероятность равна P=m/n=10/16=5/8=0.625P=m/n=10/16=5/8=0.625.
Думаю, к этому времени вы уже поняли суть метода и сможете сами решить задачи, где бросаются 2-3-4 монеты и орел не выпадает ни разу, или решка ровно один раз и т. п.
Независимые события. Если вероятность наступления одного события не меняется от того произошло или нет другое событие
Касаемо монетки, вероятность исхода зависит от того как подбросили монетку, и в какой момент прервали полет.
Похожие вопросы
- Как решить задачу по теории вероятности?!
- Помогите решить задачки по теории вероятности
- Помогите решить задачку по теории вероятности
- помогите. Теория вероятности.
- Теория вероятностей. Шанс победы
- нужна помощь в решении задачи по теории вероятности и мат. анализу
- "1+1= 3 и 1+1= 1". Как называется эта теория?
- Вы поддерживаете - "Теорию детерминированного хаоса"??!.
- Удалось ли Честертону одним афоризмом про свободные дни угнетённых опровергнуть трудовую теорию стоимости Карла Маркса?
- Какова вероятность, что существовали гораздо более древние цивилизации, не оставившие ни следов, ни наследников?