В столовой дома отдыха зашла за обедом речь о том, как вычисляется вероятность событий. Молодой математик, оказавшийся среди обедающих, вынул монету и сказал:
— Кидаю на стол монету, не глядя. Какова вероятность, что она упадёт гербом вверх?
— Объясните сначала, что значит «вероятность», — раздались голоса. — Не всем ясно.
— О, это очень просто! Монета может лечь на стол двояко (рис. 58): вот так — гербом вверх и вот так — гербом вниз.
Всех случаев здесь возможно только два. Из них для интересующего нас события благоприятен лишь один случай. Теперь находим отношение
Рис. числа благоприятных случаев / к числу возможных случаев = 1/2
Дробь и выражает «вероятность» того, что монета упадёт гербом вверх.
— С монетой-то просто, — вмешался кто-то. — А вы рассмотрите случай посложней, с игральной костью, например.
— Давайте, рассмотрим, — согласился математик. — У нас игральная кость, кубик с цифрами на гранях (рис. 59). Какова вероятность, что брошенный кубик упадёт определённой цифрой вверх, скажем — вскроется шестёркой? Сколько здесь всех возможных случаев? Кубик может лечь на любую из своих шести граней; значит, возможно всего 6 случаев. Из них благоприятен нам только один: когда вверху шестёрка. Итак, вероятность получится от деления 1 на 6. Короче сказать, она выражается дробью .
Рис. 58. «Монета может лечь на стол двояко»
Рис. 59. Игральная кость.
— Неужели можно вычислить вероятность во всех случаях? — спросила одна из отдыхающих. — Возьмите такой пример. Я загадала, что первый прохожий, которого мы увидим из окна столовой, будет мужчина. Какова вероятность, что я отгадала?
— Вероятность, очевидно, равна половине, если только мы условимся и годовалого мальчика считать за мужчину. Число мужчин на свете равно числу женщин.
— А какова вероятность, что первые двое прохожих окажутся оба мужчины? — спросил один из отдыхающих.
— Этот расчёт немногим сложнее. Перечислим, какие здесь вообще возможны случаи. Во-первых, возможно, что оба прохожих будут мужчины. Во-вторых, что сначала покажется мужчина, за ним женщина. В-третьих, наоборот: что раньше появится женщина, потом мужчина. И, наконец, четвёртый случай: оба прохожих — женщины. Итак, число всех возможных случаев — 4. Из них благоприятен, очевидно, только один случай — первый. Получаем для вероятности дробь . Вот ваша задача и решена.
— Понятно. Но можно поставить вопрос и о трёх мужчинах: какова вероятность, что первые трое прохожих все окажутся мужчины?
— Что же, вычислим и это. Начнём опять с подсчёта возможных случаев. Для двоих прохожих число всех случаев равно, мы уже знаем, четырём. С присоединением третьего прохожего число возможных случаев увеличивается вдвое, потому что к каждой из 4 перечисленных группировок двух прохожих может присоединиться либо мужчина, либо женщина. Итого, всех случаев возможно здесь 4×2=8. А искомая вероятность, очевидно, равна, потому что благоприятен событию только 1 случай. Здесь легко подметить правило подсчёта: в случае двух прохожих мы имели вероятность в случае трёх ; в случае четырёх вероятность равна произведению четырёх половинок и т. д. Вероятность всё уменьшается, как видите.
— Чему же она равна, например, для десятка прохожих?
— То есть какова вероятность, что первые десять прохожих все подряд окажутся мужчинами? Вычислим, как велико произведение десяти половинок. Это, менее одной тысячной доли. Значит, если вы бьётесь о заклад, что это случится, и ставите 1 рубль, то я могу ставить 1000 рублей за то, что этого не произойдёт.
— Выгодное пари! — заявил чей-то голос. — Я бы охотно поставил рубль, чтобы получить возможность выиграть целую тысячу.
— Но имеется тысяча шансов против вашего одного, учтите и это.
— Ничего не значит. Я бы рискнул рублём против тысячи даже и за то, что сотня прохожих окажутся все подряд мужчинами.
— А вы представляете себе, как мала вероятность такого события? — спросил математик.