НУ КАК НРАВИТСЯ ТАКОЙ ОТВЕТ
Термин бесконечность соответствует нескольким различным понятиям, в зависимости от области применения, будь то математика, физика, философия, теология или повседневная жизнь.
Бесконечность в большинстве культур появилась как абстрактное количественное обозначение чего-то непостижимо большого, в применении к сущностям без пространственных или временных границ.
Бесконечность также неразрывно связана с обозначением бесконечно малого, к примеру, ещё Аристотель сказал:
«… всегда возможно придумать большее число, потому что количество частей, на которые можно разделить отрезок, не имеет предела. Поэтому бесконечность потенциальна, никогда не действительна; какое бы число делений не задали, всегда потенциально можно поделить на большее число. » (Физика III, 6)
Вообще Аристотель сделал большой вклад в осознание бесконечности, разделив её на потенциальную и актуальную (под актуальной подразумевая реальность существования бесконечных вещей) и вплотную подойдя с этой стороны к основам математического анализа, а также указав на пять источников представления о ней:
время
разделение величин
неиссякаемость творящей природы
само понятие границы, толкающее за её пределы
мышление, которое неостановимо
Далее бесконечность получила развитие в философии и теологии наравне с точными науками. К примеру, в теологии бесконечность Бога не столько даёт количественное определение, сколько означает неограниченность и непостижимость. В философии это атрибут пространства и времени.
В математике не существует одного понятия бесконечности, она наделяется особыми свойствами в каждом разделе. Более того, эти различные «бесконечности» не взаимозаменяемы. К примеру, теория множеств подразумевает разные бесконечности, причём одна может быть больше другой. Скажем, количество целых чисел бесконечно большое (оно называется счётным) . Чтобы обобщить понятие количества элементов для бесконечных множеств, в математике вводится понятие мощности множества. При этом не существует одной «бесконечной» мощности. Например, мощность множества действительных чисел больше мощности целых чисел, потому что между этими множествами нельзя построить взаимно-однозначное соответствие (биекцию) , а целые числа включены в действительные. Таким образом, в этом случае одно кардинальное число (равно мощности множества) «бесконечнее» другого. Основоположником этих понятий был немецкий математик Георг Кантор.
В матанализе ко множеству действительных чисел добавляются два символа, плюс и минус бесконечность, применяющиеся для определения граничных значений и сходимости. Сто́ит отметить, что в этом случае речь об «осязаемой» бесконечности не идёт, так как любое утверждение, содержащее этот символ, можно записать, используя только конечные числа и кванторы. Эти символы (как и многие другие) были введены для сокращения записи более длинных выражений.
Современная физика вплотную подходит к отрицаемой Аристотелем актуальности бесконечности — то есть доступности в реальном мире, а не только в абстрактном. Например, есть понятие сингулярности, тесно связанное с чёрными дырами и теорией большого взрыва: это точка в пространстве — времени, в которой масса в бесконечно малом объёме сосредоточена с бесконечной плотностью. Уже есть солидные косвенные доказательства существования чёрных дыр, хотя теория большого взрыва находится ещё в стадии разработки.
Естественные науки
бесконечность, дайте определение?
До хрена
Бесконечное множество - НЕ конечное множество по определению.
В теории действительных чисел бесконечностью называют условный символ, применяемый как предельное понятие. Например, условно говорят "предел последовательности - бесконечность", под этим подразумевается, что какое бы большое число мы ни задумали, всё равно найдётся член последовательности, начиная с которого все члены больше этого числа.
Аналогично, иногда условно говорят "функция принимает в точке a бесконечное значение", на самом деле подразумевается, что её предел в этой точке бесконечен, то есть, какое большое число ни задумай, найдётся окрестность точки a, такая, что все значения функции в этой окрестности больше нашего числа.
В теории действительных чисел бесконечностью называют условный символ, применяемый как предельное понятие. Например, условно говорят "предел последовательности - бесконечность", под этим подразумевается, что какое бы большое число мы ни задумали, всё равно найдётся член последовательности, начиная с которого все члены больше этого числа.
Аналогично, иногда условно говорят "функция принимает в точке a бесконечное значение", на самом деле подразумевается, что её предел в этой точке бесконечен, то есть, какое большое число ни задумай, найдётся окрестность точки a, такая, что все значения функции в этой окрестности больше нашего числа.
Чем больше есть, тем больше хочется.
Нет начала нет конца....
Образно: бескончность-это замкнутый круг без толщины цетра и диаметра...
Нечто не имеющее конца.
Сюита Папанова
Это - инвалид какой-то... )))))
Эйнштейн: «Две вещи действительно бесконечны: Вселенная и человеческая глупость. Впрочем, насчет Вселенной у меня есть некоторые сомнения».
Любое число, делённое на ноль.
Похожие вопросы
- Дайте определение производной функции. Только обьясните что это такое чтобы рассказать учителю
- Дать определение времени (секунда это денница измерения времени). Бред из википедии не копипастить. Своими словами.
- помогите дать определения следующим понятиям....
- Физика. Дайте определение инертности пожалуйтса
- Дайте определение инстинкта?
- дайте определения терминам по географии
- Дайте определение следующих жанров устного народного творчества(фольклора)
- физики помогите! дайте определения словам и формулы к ним!
- почему сложно дать определение понятия жизнь?
- почему сложно дать определение понятия "жизнь"