Допустим знак корня распространяется на оба множителя
Замена 7–3x=u
√((u+2)(u–2)) ≥ 0
(u+2)(u–2) ≥ 0
u ≤ –2 ∨ u ≥ 2
7–3x ≤ –2 ∨ 7–3x ≥ 2
–3x ≤ –9 ∨ –3x ≥ –5
x ≥ 3 ∨ x ≤ 5/3
Если добавить условие x ≥ -1, то решение будет составлять множество [-1;5/3]∪[3;+∞), в котором бесконечно много целых решений.
При таком условии вопрос некорректен.
Значит имелось в виду, что знак корня распространяется только на первый множитель
√(u+2) (u-2) ≥ 0
число под корнем должно быть неотрицательным
второй множитель может быть отрицательным, только если первый равен нулю
u+2 ≥ 0 ∧ ((u–2) ≥ 0 ∨ u+2 = 0)
u ≥ –2 ∧ (u ≥ 2 ∨ u = –2)
(u ≥ –2 ∧ u = –2) ∨ (u ≥ –2 ∧ u ≥ 2)
u=–2 ∨ u ≥ 2
7–3x = –2 ∨ 7–3x ≥ 2
–3x=–9 ∨ –3x ≥ –5
x=3 ∨ x ≤ 5/3
с добавлением условия x≥–1 решение будет составлять множество [–1;5/3]∪{3}
целые решения это числа –1,0,1,3
их сумма равна 2
!поправочка, их сумма равна 3, конечно