
Домашние задания: Другие предметы
Как доказать, что углы прямоугольных треугольников равны

так тр-ки равны по гипотенузе и катету.
отсюда- против равных сторон лежат равные углы
отсюда- против равных сторон лежат равные углы
Учить надо материал
Введение и доказательство первого признака равенства прямоугольных треугольников
Вспомним из материала предыдущего урока, прямоугольный треугольником называется треугольник, если у него хотя бы один из углов прямой (т. е. равен 90о).
Рассмотрим первый признак равенства треугольников: если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.
Проиллюстрируем данный случай:
Рис. 1. Равные прямоугольные треугольники
Доказательство:
Вспомним о первом равенстве произвольных треугольников.
Рис. 2
Если две стороны и угол между ними одного треугольника и соответствующие им две стороны и угол между ними второго треугольника равны, то данные треугольники равны. Об этом гласит первый признак равенства треугольников, то есть:
АВС = .
Аналогичное доказательство следует и для прямоугольных треугольников:
.
Треугольники равны по первому признаку.
Введение и доказательство второго признака равенства прямоугольных треугольников
Рассмотрим второй признак равенства прямоугольных треугольников. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему острому углу другого прямоугольного треугольника, то такие треугольники равны.
Рис. 3
Доказательство:
Рис. 4
Воспользуемся вторым признаком равенства треугольников:
Аналогичное доказательство и для прямоугольных треугольников:
Треугольники равны по второму признаку.
Введение и доказательство третьего признака равенства прямоугольных треугольников
Рассмотрим третий признак равенства прямоугольных треугольников: если гипотенуза и прилежащий к ней угол одного прямоугольного треугольника соответственно равны гипотенузе и прилежащему углу другого треугольника, то такие треугольники равны.
Доказательство:
Рис. 5
Вспомним второй признак равенства треугольников:
Рис. 6
Данные треугольники равны, если:
Поскольку известно, что одна пара острых углов у прямоугольных треугольников равна (∠А = ∠А1), то равенство другой пары углов (∠B = ∠B1) доказывается следующим образом:
.
Поскольку АВ = А1В1 ( по условию), ∠В = ∠В1, ∠А = ∠А1. Поэтому треугольники АВС и А1В1С1 равны по второму признаку.
Введение и доказательство четвёртого признака равенства прямоугольных треугольников, введение понятия «внешний угол треугольника»
Рассмотрим следующий признак равенства треугольников:
Если катет и гипотенуза одного треугольника соответственно равны катету и гипотенузе другого треугольника, такие прямоугольные треугольники равны.
Рис. 7
Доказательство:
Совместим наложением треугольники АВС и А1В1С1. Предположим, что вершины А и А1, а также С и С1 совместились наложением, а вершина В и точка В1 не совпадают. Именно этот случай указан на следующем рисунке:
Рис. 8
В данном случае мы можем заметить равнобедренный треугольник АВВ1 (по определению – по условию АВ = АВ1). Поэтому по свойству, ∠АВ1В = ∠АВВ1. Рассмотрим определение внешнего угла. Внешним углом треугольника называется угол, смежный любому углу треугольника. Его градусная мера равна сумме двух углов треугольника, несмежных с ним. На рисунке указано данное соотношение:
Рис. 9
Угол 5 является внешним углом треугольника и равен ∠5 = ∠1 + ∠2.
Введение и доказательство первого признака равенства прямоугольных треугольников
Вспомним из материала предыдущего урока, прямоугольный треугольником называется треугольник, если у него хотя бы один из углов прямой (т. е. равен 90о).
Рассмотрим первый признак равенства треугольников: если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.
Проиллюстрируем данный случай:
Рис. 1. Равные прямоугольные треугольники
Доказательство:
Вспомним о первом равенстве произвольных треугольников.
Рис. 2
Если две стороны и угол между ними одного треугольника и соответствующие им две стороны и угол между ними второго треугольника равны, то данные треугольники равны. Об этом гласит первый признак равенства треугольников, то есть:
АВС = .
Аналогичное доказательство следует и для прямоугольных треугольников:
.
Треугольники равны по первому признаку.
Введение и доказательство второго признака равенства прямоугольных треугольников
Рассмотрим второй признак равенства прямоугольных треугольников. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему острому углу другого прямоугольного треугольника, то такие треугольники равны.
Рис. 3
Доказательство:
Рис. 4
Воспользуемся вторым признаком равенства треугольников:
Аналогичное доказательство и для прямоугольных треугольников:
Треугольники равны по второму признаку.
Введение и доказательство третьего признака равенства прямоугольных треугольников
Рассмотрим третий признак равенства прямоугольных треугольников: если гипотенуза и прилежащий к ней угол одного прямоугольного треугольника соответственно равны гипотенузе и прилежащему углу другого треугольника, то такие треугольники равны.
Доказательство:
Рис. 5
Вспомним второй признак равенства треугольников:
Рис. 6
Данные треугольники равны, если:
Поскольку известно, что одна пара острых углов у прямоугольных треугольников равна (∠А = ∠А1), то равенство другой пары углов (∠B = ∠B1) доказывается следующим образом:
.
Поскольку АВ = А1В1 ( по условию), ∠В = ∠В1, ∠А = ∠А1. Поэтому треугольники АВС и А1В1С1 равны по второму признаку.
Введение и доказательство четвёртого признака равенства прямоугольных треугольников, введение понятия «внешний угол треугольника»
Рассмотрим следующий признак равенства треугольников:
Если катет и гипотенуза одного треугольника соответственно равны катету и гипотенузе другого треугольника, такие прямоугольные треугольники равны.
Рис. 7
Доказательство:
Совместим наложением треугольники АВС и А1В1С1. Предположим, что вершины А и А1, а также С и С1 совместились наложением, а вершина В и точка В1 не совпадают. Именно этот случай указан на следующем рисунке:
Рис. 8
В данном случае мы можем заметить равнобедренный треугольник АВВ1 (по определению – по условию АВ = АВ1). Поэтому по свойству, ∠АВ1В = ∠АВВ1. Рассмотрим определение внешнего угла. Внешним углом треугольника называется угол, смежный любому углу треугольника. Его градусная мера равна сумме двух углов треугольника, несмежных с ним. На рисунке указано данное соотношение:
Рис. 9
Угол 5 является внешним углом треугольника и равен ∠5 = ∠1 + ∠2.
Виталий Туляков
http://interneturok.ru/geometry/7-klass/sootnosheniya-mezhdu-storonami-i-uglami-treugolnikov/priznaki-ravenstva-pryamougolnyh-treugolnikov-2
Сергей Золенко
Да в том то и дело что учишь, учишь, а понять не можешь)
Похожие вопросы
- Один из углов прямоугольного треугольника равен 60°, а сумма гипотенузы и меньшего катета равна 42см. Найдите гипотенузу
- периметр прямоугольного треугольника равен 24 см, а площадь равна 24 см в квадрате. Найдите стороны треугольника
- 11.Докажите,что катет прямоугольного треугольника,лежащий против угла в 30,равен половине гипотенузы.Сформулируйте и док
- Докажите,что каждый угол равностороннего треугольника равен 60 градусов.помогите,пожаалуйста
- Гипотенуза прямоугольного треугольника равна 12 см. Какие значения может принимать площадь этого треугольника?
- Площадь прямоугольного треугольника равна 15 см2, а сумма его катетов равна 11 см. Найти катеты.
- Один из углов равнобедренного треугольника равен 100 градусов. Найти нужно другие углы. Найти нужно другие углы.
- Один из катетов прямоугольного треугольника равен 15 см, а проекция другого катета на гипотенузу 16 см. Найти радиус окр
- гипотенуза прямоугольного треугольника равна 26 см, а площадь 120 см в квадрате найдите меньший катет
- Гипотенуза прямоугольного треугольника равна 26 см, а площадь 120 см2. Найдите меньший катет. Решите пжлст