1) Разложите на множители квадратный трехчлен 4x^2+7-2.Пожалуйста дайте срочное решение!
2) Найдите значение x, при котором трехчлен 30x-25x^2-4 принимает наибольшее значение.
Домашние задания: Другие предметы
Разложите на множители квадратный трехчлен 4x^2+7-2.Пожалуйста дайте срочное решение!
Квадратный трехчлен ax2+bx+c можно разложить на линейные множители по формуле:
ax2+bx+c=a (x-x1)(x-x2), где x1, x2 — корни квадратного уравнения ax2+bx+c=0.
Разложить квадратный трехчлен на линейные множители:
Пример 1). 2x2-7x-15.
Решение. Найдем корни квадратного уравнения: 2x2-7x-15=0.
a=2; b=-7; c=-15. Это общий случай для полного квадратного уравнения. Находим дискриминант D.
D=b2-4ac=(-7)2-4∙2∙(-15)=49+120=169=132>0; 2 действительных корня.
Применим формулу: ax2+bx+c=a (x-x1)(x-x2).
2x2-7x-15=2 (х+1,5)(х-5)=(2х+3)(х-5). Мы представили данный трехчлен 2x2-7x-15 в виде произведения двучленов 2х+3 и х-5.
Ответ: 2x2-7x-15=(2х+3)(х-5).
Пример 2). 3x2+2x-8.
Решение. Найдем корни квадратного уравнения:
3x2+2x-8=0.
a=3; b=2; c=-8. Это частный случай для полного квадратного уравнения с четным вторым коэффициентом (b=2). Находим дискриминант D1.
Применим формулу: ax2+bx+c=a (x-x1)(x-x2).
Мы представили трехчлен 3x2+2x-8 в виде произведения двучленов х+2 и 3х-4.
Ответ: 3x2+2x-8=(х+2)(3х-4).
Пример 3). 5x2-3x-2.
Решение. Найдем корни квадратного уравнения:
5x2-3x-2=0.
a=5; b=-3; c=-2. Это частный случай для полного квадратного уравнения с выполненным условием: a+b+c=0 (5-3-2=0). В таких случаях первый корень всегда равен единице, а второй корень равен частному от деления свободного члена на первый коэффициент:
Применим формулу: ax2+bx+c=a (x-x1)(x-x2).
5x2-3x-2=5 (х-1)(х+0,4)=(х-1)(5х+2). Мы представили трехчлен 5x2-3x-2 в виде произведения двучленов х-1 и 5х+2.
Ответ: 5x2-3x-2=(х-1)(5х+2).
Пример 4). 6x2+x-5.
Решение. Найдем корни квадратного уравнения:
6x2+x-5=0.
a=6; b=1; c=-5. Это частный случай для полного квадратного уравнения с выполненным условием: a-b+c=0 (6-1-5=0). В таких случаях первый корень всегда равен минус единице, а второй корень равен минус частному от деления свободного члена на первый коэффициент:
Применим формулу: ax2+bx+c=a (x-x1)(x-x2).
Мы представили трехчлен 6x2+x-5 в виде произведения двучленов х+1 и 6х-5.
Ответ: 6x2+x-5=(х+1)(6х-5).
Пример 5). x2-13x+12.
Решение. Найдем корни приведенного квадратного уравнения:
x2-13x+12=0. Проверим, можно ли применить теорему Виета. Для этого найдем дискриминант и убедимся, что он является полным квадратом целого числа.
a=1; b=-13; c=12. Находим дискриминант D.
D=b2-4ac=132-4∙1∙12=169-48=121=112.
Применим теорему Виета: сумма корней должна быть равна второму коэффициенту, взятому с противоположным знаком, а произведение корней должно быть равно свободному члену:
x1+x2=13; x1∙x2=12. Очевидно, что x1=1; x2=12.
Применим формулу: ax2+bx+c=a (x-x1)(x-x2).
x2-13x+12=(х-1)(х-12).
Ответ: x2-13x+12=(х-1)(х-12).
Пример 6). x2-4x-6.
Решение. Найдем корни приведенного квадратного уравнения:
x2-4x-6=0.
a=1; b=-4; c=-6. Второй коэффициент — четное число. Находим дискриминант D1.
Дискриминант не является полным квадратом целого числа, поэтому, теорема Виета нам не поможет, и мы найдем корни по формулам для четного второго коэффициента:
Применим формулу: ax2+bx+c=a (x-x1)(x-x2) и запишем ответ:
ax2+bx+c=a (x-x1)(x-x2), где x1, x2 — корни квадратного уравнения ax2+bx+c=0.
Разложить квадратный трехчлен на линейные множители:
Пример 1). 2x2-7x-15.
Решение. Найдем корни квадратного уравнения: 2x2-7x-15=0.
a=2; b=-7; c=-15. Это общий случай для полного квадратного уравнения. Находим дискриминант D.
D=b2-4ac=(-7)2-4∙2∙(-15)=49+120=169=132>0; 2 действительных корня.
Применим формулу: ax2+bx+c=a (x-x1)(x-x2).
2x2-7x-15=2 (х+1,5)(х-5)=(2х+3)(х-5). Мы представили данный трехчлен 2x2-7x-15 в виде произведения двучленов 2х+3 и х-5.
Ответ: 2x2-7x-15=(2х+3)(х-5).
Пример 2). 3x2+2x-8.
Решение. Найдем корни квадратного уравнения:
3x2+2x-8=0.
a=3; b=2; c=-8. Это частный случай для полного квадратного уравнения с четным вторым коэффициентом (b=2). Находим дискриминант D1.
Применим формулу: ax2+bx+c=a (x-x1)(x-x2).
Мы представили трехчлен 3x2+2x-8 в виде произведения двучленов х+2 и 3х-4.
Ответ: 3x2+2x-8=(х+2)(3х-4).
Пример 3). 5x2-3x-2.
Решение. Найдем корни квадратного уравнения:
5x2-3x-2=0.
a=5; b=-3; c=-2. Это частный случай для полного квадратного уравнения с выполненным условием: a+b+c=0 (5-3-2=0). В таких случаях первый корень всегда равен единице, а второй корень равен частному от деления свободного члена на первый коэффициент:
Применим формулу: ax2+bx+c=a (x-x1)(x-x2).
5x2-3x-2=5 (х-1)(х+0,4)=(х-1)(5х+2). Мы представили трехчлен 5x2-3x-2 в виде произведения двучленов х-1 и 5х+2.
Ответ: 5x2-3x-2=(х-1)(5х+2).
Пример 4). 6x2+x-5.
Решение. Найдем корни квадратного уравнения:
6x2+x-5=0.
a=6; b=1; c=-5. Это частный случай для полного квадратного уравнения с выполненным условием: a-b+c=0 (6-1-5=0). В таких случаях первый корень всегда равен минус единице, а второй корень равен минус частному от деления свободного члена на первый коэффициент:
Применим формулу: ax2+bx+c=a (x-x1)(x-x2).
Мы представили трехчлен 6x2+x-5 в виде произведения двучленов х+1 и 6х-5.
Ответ: 6x2+x-5=(х+1)(6х-5).
Пример 5). x2-13x+12.
Решение. Найдем корни приведенного квадратного уравнения:
x2-13x+12=0. Проверим, можно ли применить теорему Виета. Для этого найдем дискриминант и убедимся, что он является полным квадратом целого числа.
a=1; b=-13; c=12. Находим дискриминант D.
D=b2-4ac=132-4∙1∙12=169-48=121=112.
Применим теорему Виета: сумма корней должна быть равна второму коэффициенту, взятому с противоположным знаком, а произведение корней должно быть равно свободному члену:
x1+x2=13; x1∙x2=12. Очевидно, что x1=1; x2=12.
Применим формулу: ax2+bx+c=a (x-x1)(x-x2).
x2-13x+12=(х-1)(х-12).
Ответ: x2-13x+12=(х-1)(х-12).
Пример 6). x2-4x-6.
Решение. Найдем корни приведенного квадратного уравнения:
x2-4x-6=0.
a=1; b=-4; c=-6. Второй коэффициент — четное число. Находим дискриминант D1.
Дискриминант не является полным квадратом целого числа, поэтому, теорема Виета нам не поможет, и мы найдем корни по формулам для четного второго коэффициента:
Применим формулу: ax2+bx+c=a (x-x1)(x-x2) и запишем ответ:
Алексей Зотов
Дай те решение 2
Евгений Колесник
Скажите пожалуйста класс.
Похожие вопросы
- как разложить на множители квадратный трехчлен? (пожалуйста по подробней если можно) 6-7x-3x^2?
- Люди помогите очень нужно!!! Алгебра 7 класс Разложить на множители: 3a^2-6a+3 4a^2+8a+4 18a^2+12ab+2b^2 12m^2-12m+3^2
- Вопрос по геометрии 8-класса Найдите корни квадратного трехчлена,стмотрите внизу!
- помогите разложить на множители выражение. X^2-10x+25
- помогите плиз разложите на множители: 125а^3-1 32t^3-48t^2+18t
- Как разложить на множители многочлен 2x^3+5x^2-x-1
- Как выделяется квадрат двучлена из квадратного трехчлена?
- Помогите плиз решить пример квадратных трехчлен
- Решите уравнения 9x-4=10x 5x=5x-6 x+2=4x -4x=-10x-9 2+8x=3x+9 3x+9 3x+3=-2-7x 3-4x=-8x+9 9=5(x+9) x=4(6+x)
- почему х^2+3x^2=4x^2 то есть можно здесь их складывать , потому что оба Х^2 А cosx+cos3x не равно cos4x? спасибо