Прочее непознанное

что в математики обозначает слово представления

Теория представлений — раздел математики, изучающий абстрактные алгебраические структуры с помощью представления их элементов в виде линейных преобразований векторных пространств. В сущности, представление делает абстрактные алгебраические объекты более конкретными, описывая их элементы матрицами, а операции сложения и умножения этих объектов — сложением и умножением матриц. Среди объектов, поддающихся такому описанию, находятся группы, ассоциативные алгебры и алгебры Ли. Наиболее известной (и, исторически, возникшей первой) является теория представлений групп.

Теория представлений является мощным инструментом, потому что она сводит задачи общей алгебры к задачам линейной алгебры, предмет которой хорошо понятен. Кроме того, векторное пространство, с помощью которого представлена группа, может быть бесконечномерным, и если добавить к нему структуру гильбертова пространства, можно будет применить методы математического анализа. Теория представлений также имеет важное значение для физики, так как она, например, описывает, как группа симметрий физической системы влияет на решения уравнений, описывающих эту систему.

Поразительная особенность теории представлений — это её распространённость в математике. Первый аспект этого — разнообразные приложения теории представлений: в дополнение к своему влиянию на алгебру она освещает и значительно обобщает анализ Фурье с помощью гармонического анализа, она тесно связана с геометрией через теорию инвариантов и эрлангенскую программу, оказывает большое влияние на теорию чисел через автоморфные формы и программу Ленглендса. Вторым аспектом является разнообразие подходов к теории представлений. Одни и те же объекты могут быть изучены с помощью методов алгебраической геометрии, теории модулей, аналитической теории чисел, дифференциальной геометрии, теории операторов, алгебраической комбинаторики и топологии.
Зоя Цуканова
Зоя Цуканова
55 113
Лучший ответ
Линейные уравнения.