На 4 делятся все натуральные числа, две последние цифры которых составляют нули или число, кратное 4. Например:
124 (24 : 4 = 6);
103 456 (56 : 4 = 14).
На 6 делятся те натуральные числа, которые делятся на 2 и на 3 одновременно (все четные числа, которые делятся на 3). Например: 126 (б — четное, 1 + 2 + 6 = 9, 9 : 3 = 3).
Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (например, 364 делится на 7, так как 36 − (2 ∙ 4) = 28 делится на 7).
Либо использовать модификацию признака деления на 1001=10³+1, которое само делится на 7:
Для того, чтобы натуральное число делилось на 7 необходимо и достаточно, чтобы алгебраическая сумма чисел, образующих нечётные группы по три цифры (начиная с единиц) взятых со знаком «+» и чётных со знаком «-» делилась на семь (например, число 689255. Первая группа со знаком «+» (255), вторая со знаком «-» (689). Отсюда 255 + (-689) = −434. В свою очередь 434 : 7 = 62).
Ещё один признак — берём первую цифру, умножаем на 3, прибавляем следующую (здесь можно взять остаток от деления на 7 от получившегося числа) . И далее — сначала: умножаем на 3, прибавляем следующую… Для 364: 3 * 3 + 6 = 15. Остаток — 1. Далее 1 * 3 + 4 = 7.
Число делится на 8 тогда и только тогда, когда число, образованное тремя его последними цифрами, делится на 8.
Чтобы узнать, делится ли трёхзначное число на 8, можно половину единиц прибавить к десяткам. У получившегося числа также половину единиц прибавить к десяткам. Если итоговая сумма делится на 2, значит, число делится на 8. Например, 952: 95 + 1 = 96, далее 9 + 3 = 12. Значит, 952 делится на 8.
На 9 делятся те натуральные числа, сумма цифр которых кратна 9. Например:
1179 (1 + 1 + 7 + 9 = 18, 18 : 9 = 2).
На 11 делятся только те натуральные числа, у которых сумма цифр, занимающих четные места, равна сумме цифр, занимающих нечетные места, или разность суммы цифр нечетных мест и суммы цифр четных мест кратна 11. Например:
105787 (1 + 5 + 8 = 14 и 0 + 7 + 7 = 14);
9 163 627 (9 + 6 + б + 7 = 28 и 1 + 3 + 2 = 6);
28 — 6 = 22; 22 : 11 = 2).
Число делится на 13 тогда и только тогда, когда сумма числа, полученного отбрасыванием последней цифры и учётверённой последней цифры, делится на 13. Например 845 : 13, так как 84+(4*5)=104:13 10+(4*4)= 26:13.
Число делится на 17 тогда и только тогда, когда число его десятков, сложенное с увеличенным в 12 раз числом единиц, кратно 17 (например, 29053→2905+36=2941→294+12=306→30+72=102→10+24=34. Поскольку 34 делится на 17, то и 29053 делится на 17). Признак не всегда удобен, но имеет определенное значение в математике. Есть способ немного проще — число делится на 17 тогда и только тогда, когда разность между числом его десятков и упятерённым числом единиц кратна 17 (например, 32952→3295-10=3285→328-25=303→30-15=15; поскольку 15 не делится на 17, то и 32952 не делится на 17)
Школы
Подскажите как узнать, делится ли число на 4, 6, 7, 8, 9, 11, 13, 17?
нужно разделить число на 4, 6, 7, 8, 9, 11, 13, 17
просто раздели число
делить надо на все поданые тобою числами
на 7 поделить надо вычесть из первого числа произведения второго и третьего
гыгыш
Похожие вопросы
- на доске написаны числа 1,2,3,4,5,6,7,8,9. За один ход можно увеличить любое число из чисел на 3 или на 5. какое минимал
- Как обозначаются в римских цифрах 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21?
- очень срочно помогите вопросы 5, 6, 7, 8, 9, 10, 11, 12.
- 1 2 3 4 5 6 7 8 9 =100 расставьте знак "+" , чтобы получилось верное равенство
- 1 2 3 4 5 6 7 8 9 10 найди ошибку. где здесь ошибка
- Вопрос про систему образования в СНГ, как можно в один день учить по 7-8-9 разных уроков в один день? Ведь не выучишь
- а в каком классе будет хуже 6 7 8
- Подскажите пжлст решение: Найдите две дроби, каждая из которых больше 7/9 (семи девятых) и меньше 8/9 (восьми девятых)
- известно, что m,n - нечётные числа. Докажите, что (m² - n²):8, т. е нацело делится на 8
- Работаю в школе.Ученики неуправляемые(6-7 классы), поначалу все более менее, а теперь началось 8-) !!!
Чёчётка