h t t p : / / b u y t a s k . r u / t a s k 4 5 7 . h t m l
В этой работе приведена подробная пошаговая схема полного исследования функции для построения ее графика. Все шаги снабжены конкретными примерами и теоретическими пояснениями и обоснованиями. В работе приведены несколько полных исследований кроме примеров по каждому вопросу практики и теории. Может быть использована как для практических исследований, так и для теоретической подготовки по данной теме.
Убери пробелы в ссылке.
Если будут вопросы - пиши в агент.
ВУЗы и колледжи
как провести полное исследование функции
взять первую и вторую произвдные
Схема полного исследования функции y=f(х) .
1. Область определения функции (те значения х, которые допустимы при выполнении операций, входящих в функцию) .
2. Область непрерывности функции и точки разрыва. Область непрерывности чаще всего совпадает с областью определения; необходимо исследовать в изолированных точках, то есть отдельно "выкинутых". Для исследования необходимо найти левый и правый предел в данной точке, если они не равны и оба конечны, или равны бесконечности (хотя бы один из пределов) , то в этой точке разрыв первого или второго рода соответственно. Если же пределы равны, то функция непрерывна и в этой точке.
3. Исследование на наличие вертикальных асимптот. Как правило, в точках разрыва 2 рода - вертикальная асимптота. Но если из области определения выкидывается целых промежуток точек, то исследовать необходимо на концах этого промежутка.
4. Четность, нечетность. Проверяется по определению.
5. Периодичность. Заменяем х на х+Т и ищем наименьшее положительное Т. Если такого не существует, то функция не периодична, если же вам удалось его найти, то это период функции. Не периодичность всегда видна, и я доказываю это по второстепенным признакам (например из области определения) .
6. Исследование на точки экстремума и монотонность. Находится производная, приравнивается к 0, найденные точки выставляются на числовой прямой; к ним добавляются те точки, в которых производная не определена. На промежутках находят знаки производной (+ - больше нуля, - -меньше нуля) . Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с + меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
7. Исследование на выпуклость и точки перегиба. Аналогично поступают со второй производной. Где вторая производная меньше нуля, там график функции выпуклый, а где больше - вогнутый.
8. Исследование на наличие невертикальных асимптот. Находится предел отдельно на плюс бесконечности и минус бесконечности отношения функции к х (то есть предел от f(x)/x). Если он конечен, то это коэффициент k из уравнения касательной (y = kx+b ). Чтобы найти b, нужно найти предел на бесконечности в ту же сторону (то есть если k на плюс бесконечности, то и b на плюс бесконечности) от разности (f(x)-kx). Подставляем b в уравнение касательной. Если k или b найти не удалось, то есть предел равен бесконечности или не существует, то асимптот нет.
9. Точки пересечения с осями координат. С осью Oy y=f(0).
С осью Ох f(x)=0.
10. Вычисление пределов на концах области определения.
11. Построение графика функции, при необходимости находятся несколько дополнительных точек.
12. Определяют по графику область значений и ограниченность функции.
1. Область определения функции (те значения х, которые допустимы при выполнении операций, входящих в функцию) .
2. Область непрерывности функции и точки разрыва. Область непрерывности чаще всего совпадает с областью определения; необходимо исследовать в изолированных точках, то есть отдельно "выкинутых". Для исследования необходимо найти левый и правый предел в данной точке, если они не равны и оба конечны, или равны бесконечности (хотя бы один из пределов) , то в этой точке разрыв первого или второго рода соответственно. Если же пределы равны, то функция непрерывна и в этой точке.
3. Исследование на наличие вертикальных асимптот. Как правило, в точках разрыва 2 рода - вертикальная асимптота. Но если из области определения выкидывается целых промежуток точек, то исследовать необходимо на концах этого промежутка.
4. Четность, нечетность. Проверяется по определению.
5. Периодичность. Заменяем х на х+Т и ищем наименьшее положительное Т. Если такого не существует, то функция не периодична, если же вам удалось его найти, то это период функции. Не периодичность всегда видна, и я доказываю это по второстепенным признакам (например из области определения) .
6. Исследование на точки экстремума и монотонность. Находится производная, приравнивается к 0, найденные точки выставляются на числовой прямой; к ним добавляются те точки, в которых производная не определена. На промежутках находят знаки производной (+ - больше нуля, - -меньше нуля) . Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с + меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
7. Исследование на выпуклость и точки перегиба. Аналогично поступают со второй производной. Где вторая производная меньше нуля, там график функции выпуклый, а где больше - вогнутый.
8. Исследование на наличие невертикальных асимптот. Находится предел отдельно на плюс бесконечности и минус бесконечности отношения функции к х (то есть предел от f(x)/x). Если он конечен, то это коэффициент k из уравнения касательной (y = kx+b ). Чтобы найти b, нужно найти предел на бесконечности в ту же сторону (то есть если k на плюс бесконечности, то и b на плюс бесконечности) от разности (f(x)-kx). Подставляем b в уравнение касательной. Если k или b найти не удалось, то есть предел равен бесконечности или не существует, то асимптот нет.
9. Точки пересечения с осями координат. С осью Oy y=f(0).
С осью Ох f(x)=0.
10. Вычисление пределов на концах области определения.
11. Построение графика функции, при необходимости находятся несколько дополнительных точек.
12. Определяют по графику область значений и ограниченность функции.
Похожие вопросы
- Провести полное исследование функции и построить график y=(1-2x^3)/x^2. Помогите пожалуйста решить
- кто-нибудь умеет делать полное исследование функции? очень нужно последний добор баллов перед экзаменом! f(x)=x^2/16-x^2
- Применение 1 и 2 производной к исследованию функции построению графика
- Провести методику исследования восприятия времени.
- Составить уравнение касательной и нормали,проведенных к графику функции...
- y= (x^3+4)/x^2 Помогите пожалуйста сделать полное исследование функии. У самого мозгов не хватает (((
- Нужна помощь по математике, провести исследование графика. готов заплатить за решение
- Как провести исследование?
- кто знает как провести анализ функции?
- exp(x+y)=xy Исследование НЕЯВНОЙ функции и построение графика!!!!