ВУЗы и колледжи
Найти частное решение дифференциального уравнения xy"-2y'+2y'√y'=0 x=1 y=0 y'=1/4
Заменой z=y` понижаешь порядок уравнения, которое потом сводится к уравнению с разделяющимися переменными.
Ответ. x*y"-2*y'+2*(y')^1.5=0



Решение: решим линейное неоднородное уравнение второго порядка
y′′+2y′+2y=2x2+8x+6при заданных начальных условиях y(0)=1,y′(0)=4
Алгоритм решения линейного неоднородного дифференциального уравнение второго порядка
1. Решаем однородное уравнение y′′+2y′+2y=0
Решение будем искать в виде y=eλx, тогда y'=λeλx;y''=λ2eλx.
Подставляем функцию и ее производные в дифференциальное уравнение
λ2eλx+2λeλx+2eλx=0=>сокращаем на eλx, получаем характеристическое уравнение (это уравнение в следующий раз составим сразу без предыдущих пояснений)
λ2+2λ+2=0=> найдем корни характеристического уравнения λ1,2=−2±4−8−−−−√2=>λ1=−1−i;λ2=−1+i
Получили комплексно сопряженные корни, им соответствуют два решения y1(x)=e−xcos(x);y2(x)=e−xsin(x)
Общее решение однородного уравнения будет линейная комбинация yодн=C1e−xcos(x)+C2e−xsin(x)
2. Решаем неоднородное уравнение y′′+2y′+2y=2x2+8x+6
Найдем частное решение неоднородного дифференциального уравнения, ищем методом вариации произвольной переменной постоянной C1=C1(x);C2=C2(x) в виде yчаст (x)=C1(x)e−xcos(x)+C2(x)e−xsin(x)(1).
Для нахождения функций C1(x);C2(x), подставим результаты в систему с учетом
y′1(x)=(e−xcos(x))′=−e−x(cos(x)+sin(x))
y′2(x)=(e−xsin(x))′=e−x(cos(x)−sin(x))
⎧⎩⎨⎪⎪C'1(x)y1(x)+C'2(x)y2(x)=0C'1(x)y'1(x)+C'2(x)y'2(x)=b(x)a0(x)получаем
{C'1(x)e−xcos(x)+C'2(x)e−xsin(x)=0C'1(x)(−e−x(cos(x)+sin(x)))+C'2(x)(e−x(cos(x)−sin(x)))=2x2+8x+6=>
{C'1(x)cos(x)+C'2(x)sin(x)=0−C'1(x)(cos(x)+sin(x))+C'2(x)(cos(x)−sin(x))=(2x2+8x+6)ex
решаем систему уравнений методом Крамера и находим интегралы.
C1(x)=∫∣∣∣0(2x2+8x+6)exsin(x)cos(x)−sin(x)∣∣∣∣∣∣cos(x)−(cos(x)+sin(x))sin(x)cos(x)−sin(x)∣∣∣dx=
=∫−sin(x)(2x2+8x+6)excos(x)(cos(x)−sin(x))+sin(x)(cos(x)+sin(x))dx==∫−sin(x)(2x2+8x+6)excos2(x)−cos(x)sin(x)+sin(x)cos(x)+sin2(x)dx==−∫sin(x)(2x2+8x+6)exdx==−ex((x2+4x+2)sin(x)−x(x+2)cos(x))
C2(x)=∫∣∣∣cos(x) cos(x)+sin(x)0 (2x2+8x+6)ex ∣∣∣∣∣∣cos(x)−(cos(x)+sin(x))sin(x)cos(x)−sin(x)∣∣∣dx=
=∫cos(x)(2x2+8x+6)excos(x)(cos(x)−sin(x))+sin(x)(cos(x)+sin(x))dx==∫cos(x)(2x2+8x+6)excos2(x)−cos(x)sin(x)+sin(x)cos(x)+sin2(x)dx==∫cos(x)(2x2+8x+6)exdx==ex((x2+4x+2)cos(x)+x(x+2)sin(x))
Подставляем результат в (1) и получаем частное неоднородное решение дифференциального уравнения
yчаст= −ex((x2+4x+2)sin(x)−x(x+2)cos(x))∗e−xcos(x)++ex((x2+4x+2)cos(x)+x(x+2)sin(x))∗e−xsin(x)=
=x(x+2)cos2(x)+x(x+2)sin2(x) = x2+2x
3. Получаем общее решение неоднородного линейного дифференциального уравнения вида yоб=yодн+yчаст
подставляем результаты из п. 1,п. 2
yоб= C1e−xcos(x)+C2e−xsin(x)+ x2+2x
4. Решаем задачу Коши при начальных условиях y(0)=1,y′(0)=4
Находим значения констант при заданных начальных условиях Коши
Находим значение функции при условии y(0)=1
yоб (0)= C1e−xcos(x)+C2e−xsin(x)+ x2+2x=1=> C1 =1
Находим производную y′(x)
y′об= C1e−xcos(x)+C2e−xsin(x)+ x2+2x==−C1e−xcos(x)−C1e−xsin(x)−C2e−xsin(x)+C2e−xcos(x)+2x+2
при условии y′(0)=4
y′об (0) =−C1+C2+2=4
Составляем систему уравнений и решаем ее{C1=1−C1+C2=2=> {C1=1C2=3
Подставляем результат в п. 3, получаем общее решение дифференциального уравнения при заданных начальных условиях Коши
yоб=e−xcos(x)+3e−xsin(x)+ x2+2x
Ответ: решение линейного неоднородного дифференциального уравнения второго порядка, удовлетворяющее начальному условию Каши yоб=e−xcos(x)+3e−xsin(x)+ x2+2x
Подробнее - на Znanija.com - https://znanija.com/task/26656605#readmore
y′′+2y′+2y=2x2+8x+6при заданных начальных условиях y(0)=1,y′(0)=4
Алгоритм решения линейного неоднородного дифференциального уравнение второго порядка
1. Решаем однородное уравнение y′′+2y′+2y=0
Решение будем искать в виде y=eλx, тогда y'=λeλx;y''=λ2eλx.
Подставляем функцию и ее производные в дифференциальное уравнение
λ2eλx+2λeλx+2eλx=0=>сокращаем на eλx, получаем характеристическое уравнение (это уравнение в следующий раз составим сразу без предыдущих пояснений)
λ2+2λ+2=0=> найдем корни характеристического уравнения λ1,2=−2±4−8−−−−√2=>λ1=−1−i;λ2=−1+i
Получили комплексно сопряженные корни, им соответствуют два решения y1(x)=e−xcos(x);y2(x)=e−xsin(x)
Общее решение однородного уравнения будет линейная комбинация yодн=C1e−xcos(x)+C2e−xsin(x)
2. Решаем неоднородное уравнение y′′+2y′+2y=2x2+8x+6
Найдем частное решение неоднородного дифференциального уравнения, ищем методом вариации произвольной переменной постоянной C1=C1(x);C2=C2(x) в виде yчаст (x)=C1(x)e−xcos(x)+C2(x)e−xsin(x)(1).
Для нахождения функций C1(x);C2(x), подставим результаты в систему с учетом
y′1(x)=(e−xcos(x))′=−e−x(cos(x)+sin(x))
y′2(x)=(e−xsin(x))′=e−x(cos(x)−sin(x))
⎧⎩⎨⎪⎪C'1(x)y1(x)+C'2(x)y2(x)=0C'1(x)y'1(x)+C'2(x)y'2(x)=b(x)a0(x)получаем
{C'1(x)e−xcos(x)+C'2(x)e−xsin(x)=0C'1(x)(−e−x(cos(x)+sin(x)))+C'2(x)(e−x(cos(x)−sin(x)))=2x2+8x+6=>
{C'1(x)cos(x)+C'2(x)sin(x)=0−C'1(x)(cos(x)+sin(x))+C'2(x)(cos(x)−sin(x))=(2x2+8x+6)ex
решаем систему уравнений методом Крамера и находим интегралы.
C1(x)=∫∣∣∣0(2x2+8x+6)exsin(x)cos(x)−sin(x)∣∣∣∣∣∣cos(x)−(cos(x)+sin(x))sin(x)cos(x)−sin(x)∣∣∣dx=
=∫−sin(x)(2x2+8x+6)excos(x)(cos(x)−sin(x))+sin(x)(cos(x)+sin(x))dx==∫−sin(x)(2x2+8x+6)excos2(x)−cos(x)sin(x)+sin(x)cos(x)+sin2(x)dx==−∫sin(x)(2x2+8x+6)exdx==−ex((x2+4x+2)sin(x)−x(x+2)cos(x))
C2(x)=∫∣∣∣cos(x) cos(x)+sin(x)0 (2x2+8x+6)ex ∣∣∣∣∣∣cos(x)−(cos(x)+sin(x))sin(x)cos(x)−sin(x)∣∣∣dx=
=∫cos(x)(2x2+8x+6)excos(x)(cos(x)−sin(x))+sin(x)(cos(x)+sin(x))dx==∫cos(x)(2x2+8x+6)excos2(x)−cos(x)sin(x)+sin(x)cos(x)+sin2(x)dx==∫cos(x)(2x2+8x+6)exdx==ex((x2+4x+2)cos(x)+x(x+2)sin(x))
Подставляем результат в (1) и получаем частное неоднородное решение дифференциального уравнения
yчаст= −ex((x2+4x+2)sin(x)−x(x+2)cos(x))∗e−xcos(x)++ex((x2+4x+2)cos(x)+x(x+2)sin(x))∗e−xsin(x)=
=x(x+2)cos2(x)+x(x+2)sin2(x) = x2+2x
3. Получаем общее решение неоднородного линейного дифференциального уравнения вида yоб=yодн+yчаст
подставляем результаты из п. 1,п. 2
yоб= C1e−xcos(x)+C2e−xsin(x)+ x2+2x
4. Решаем задачу Коши при начальных условиях y(0)=1,y′(0)=4
Находим значения констант при заданных начальных условиях Коши
Находим значение функции при условии y(0)=1
yоб (0)= C1e−xcos(x)+C2e−xsin(x)+ x2+2x=1=> C1 =1
Находим производную y′(x)
y′об= C1e−xcos(x)+C2e−xsin(x)+ x2+2x==−C1e−xcos(x)−C1e−xsin(x)−C2e−xsin(x)+C2e−xcos(x)+2x+2
при условии y′(0)=4
y′об (0) =−C1+C2+2=4
Составляем систему уравнений и решаем ее{C1=1−C1+C2=2=> {C1=1C2=3
Подставляем результат в п. 3, получаем общее решение дифференциального уравнения при заданных начальных условиях Коши
yоб=e−xcos(x)+3e−xsin(x)+ x2+2x
Ответ: решение линейного неоднородного дифференциального уравнения второго порядка, удовлетворяющее начальному условию Каши yоб=e−xcos(x)+3e−xsin(x)+ x2+2x
Подробнее - на Znanija.com - https://znanija.com/task/26656605#readmore
Похожие вопросы
- помогите найти частное решение дифференциального уравнения xy'+y=x+1 при y=3, x=2
- Найти Общее решение дифференциального уравнения 1) (1+x^2)y'+y=Y^2arctgx 2) y''-3y'+2y=0
- Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям:
- Найти частные решения дифференциальных уравнений. Найти общее решение дифференциальных уравнений.
- Найти частное решение дифференциального уравнения удовлетворяющего начальным условиям.
- Найти частное решение линейного однородного дифференциального уравнения, удовлетворяющее условиям y(x0) = 3, y′(x0) = 0
- Помогите решить диф.уравнения! xy'+2y=x^2 y"-4y'+5y=0 y"+y'-2y=0
- Найти общее решение дифференциального уравнения (x^2-y^2)y'=2xy
- Кто понимает математику, помогите пожалуйста! Найти общее решение дифференциального уравнения и частное решение
- Найти приближенно частное решение дифференциального уравнения