а) Упростите выражение
б) Найдите значение выражения, полученного в пункте а, при a = 1; b = 64

.

log2 a + log2 (b^(1/3) - log8 a^5 =
= log2 (a *b^(1/3)) - log(2^3) a^5 =
= log2 (a * b^(1/3)) - 1/3 * log2 a^5 =
= log2 (a * b^(1/3)) - log2 (a^5)^(1/3) =
= log2 (a * b^(1/3) * a^(5/3)) =
= log2 (a^(8/3) * b^(1/3)) =
= log2 ((a^8 * b)^(1/3) =
= 1/3 * log2 (a^8 * b)
= 1/3 * log2 (1^8 * 64) =
= 1/3 * log2 (2^3 * 2^6) =
= 1/3 * log2 2^9 =
= 1/3 * 9 * log2 2 = 1/3 * 9 = 3
Дано выражение:
log2 a + log2 √(3√b) - log8 a^2
а) Упростим выражение, используя свойства логарифмов:
log2 a + log2 √(3√b) - log8 a^2
= log2 a + log2 (3√b)^(1/2) - log8 (a^2)
= log2 a + (1/2)log2 (3√b) - (2/3)log2 (a)
= log2 a^(1/3) + (1/2)log2 3 + (1/2)log2 b^(1/6) - (2/3)log2 a
= [(1/3)log2 a + (1/2)log2 3 + (1/6)log2 b] - (2/3)log2 a
б) Если подставить значения a = 1 и b = 64, получим:
[(1/3)log2 1 + (1/2)log2 3 + (1/6)log2 64] - (2/3)log2 1
= [(1/2)log2 3 + (1/2)log2 2^6] - 0
= (1/2)log2 (3 * 64)
= (1/2)log2 192
Ответ: (1/2)log2 192
Вывод - больше нехрена тебе больше отвечать.