Домашние задания: Геометрия

Очень прошу помочь разобраться! Буду очень благодарна!!!

Как решать подобные задачи?..
Найдите длину хорды окружности радиусом 13, если расстояние от центра окружности до хорды равно 5
Надо просто длину стороны треугольника найти. Треугольник этот–равнобедренный.

Равнобедренный треугольник примечателен тем, что высота опущенная на основание, будет являться и медианой. Основание делится на два равных отрезка.
По теореме Пифагора:

13^2=x^2 + 5^2

169=x^2 + 25

x^2=144

x=12

Основание будет в 2 раза больше 2*12= 24
Юрий Гуревич
Юрий Гуревич
49 371
Лучший ответ
Сергей Мельситов Разобралась, огромное спасибо! Сегодня что-то голова не варит)
Что бы разобраться, ты должна начертить чертёж.
Это 75% успеха в решении задач по геометрии.
Решается через прямоугольный треугольник. O-центр окружности, хорда - AB.
Строим окружность и хорду. Из центра проводим отрезки к точкам хорды A и B, данные отрезки являются радиусами и равны 13см (т. к. хорда проходит через две точки, принадлежащие окружности, а радиус это отрезок, соединяющий центр окружности с любой точкой, принадлежащей окружности).
Из центра О проводим серединный перпендикуляр к хорде AB, это и будет являться расстоянием от центра окружности до хорды, точку, в которой пересекается серединный перпендикуляр и хорда назовем H.

Треугольник AHO - прямоугольный, H=90 градусов. Из него по теореме пифагора мы можем найти половину хорды (серединный перпендикуляр делит хорду пополам).
AH= корень из AO^2-OH^2=корень из 13^2-5^2=169-25=корень из 144=12
Умножаешь на два, будет 24
Ответ: 24
Сергей Мельситов Спасибо большое!
Короче, к концам хорды проводишь два радиуса, получается два прямоугольных треугольника. И там по теореме Пифагора находишь катет, потом просто на 2 его умножаешь. Вроде 24 ответ (Решал в уме)