Естественные науки

Вопрос по комбинаторике. Подскажите, пожалуйста, по какой формуле можно рассчитать следующее число комбинаций: имеется з

Формула:
500! = 1 x 2 x 3 x 4 x ...x 499 x 500 = количество вариантов
ЕК
Елизавета Корецкая
5 451
Лучший ответ
Допустим, есть К зрителей. Запускаем их по очереди (это не принципиально, просто так нагляднее) : первый может сесть на любое из 500 мест, второй - из 499 мест, третий - 498 и так далее, последний выбирает одно из (500-К) мест.
Итого, имеем 500*499*498*...*(500-К) .
Красивенько это можно записать в виде: (500!)/[(500-К)! ]

Здесь у нас был принципиален порядок рассаживания: вариант "зашёл Петя и сел на первое кресло, зашел Вася и сел на третье" и вариант "зашел Петя и сел на третье место, зашел Вася и сел на первое" считаются как два разных варианта рассаживания.
Т. е. , если нам не принципиально как именно сидят зрители, а только какие места заняты и какие свободны, то полученный выше результат нужно разделить на количествп таких возможных рассаживаний. Из тех же самых соображений, их К! .

Значит, для К зрителей имеем:
(500!) / [К! *(500-К)! ]
вариантов.
(в комбинаторике это выражение называется "500 над К")

Чтобы получить общее количество вариантов рассаживания любого количества зрителей, нужно просуммировать это выражение для всех возможных значений К от 0 до 500.

*Факториал нуля считается равным единице.
Для N позиций и M возможных состояний количество всевозможных рассадок равно M^N
У нас имеется 500 позиций, 2 возможных состояния (есть человек, нет человека) , значит ответ 2^500
Чтобы убедиться, перечислим для 2 и 3 мест (0-нет никого, 1-место занято) :
00, 01, 10, 11 - 4 варианта заполнения
000, 001, 010, 011, 100, 101, 110, 111 - 8 вариантов заполнения
ВЧ
Вера Чекан
4 748

Похожие вопросы