Решение
По определению логарифмом называется степень 3, в которую нужно возвести основание логарифма 3, чтобы получить число логарифма 8-х. Тогда:
33=8-х; 27=8-х; х=-19
Ответ: -19
Естественные науки
Найдите корень уравнения: (х+3)^3=-8
Ага. . (-19+3)^3= 16^3=4096.
Проверяете хоть, что пишете?
Берем корень кубический из обеих частей.
(x+3)^3^(1/3)=(-8)^(1/3)
x+3=-2
x=-5
Проверяете хоть, что пишете?
Берем корень кубический из обеих частей.
(x+3)^3^(1/3)=(-8)^(1/3)
x+3=-2
x=-5
Вообще говоря, нужно уточнять, над каким полем требуется найти корни.
Над полем вещественных чисел уже написали, х+3=-2, т. е. х=-5
Над полем комплексных чисел задача интереснее.
Найдем сначала все числа, которые при возведении в третью степень дадут 8.
Как известно, комплексное число представимо в виде:
А = B (cos(ф) + i sin(ф)) ,
где В - вещественное неотрицательное число, ф - вещественное число от 0 до 2п
Степень комплексного числа имеет вид:
А^к = B^к (cos(кф) + i sin(кф) )
при этом |А^к| = В^к.
Для третьей степени получаем: В^3 = 8, следовательно, В = 2
cos(3ф) + i sin(3ф) = -1
Следовательно, 3ф = п + 2пк, к=...-1, 1, 2,...
или ф = п/3 + 2/3пк
Получаем три разных аргумента: п/3, п, 5/3 п
Итак, корнями третьей степени из -8 над полем комплексных чисел являются три числа:
А_1 = 2 (cos(п/3) + i sin(п/3)),
А_2 = 2 (cos(п) + i sin(п) ) = -2,
А_3 = 2 (cos(5п/3) + i sin(5п/3)).
Соответственно, решением исходного уравнения будут три комплексных числа:
А_1 - 3 = 2 (cos(п/3) + i sin(п/3)) - 3,
А_2 - 3 = -5,
А_3 - 3 = 2 (cos(5п/3) + i sin(5п/3)) - 3.
Над полем вещественных чисел уже написали, х+3=-2, т. е. х=-5
Над полем комплексных чисел задача интереснее.
Найдем сначала все числа, которые при возведении в третью степень дадут 8.
Как известно, комплексное число представимо в виде:
А = B (cos(ф) + i sin(ф)) ,
где В - вещественное неотрицательное число, ф - вещественное число от 0 до 2п
Степень комплексного числа имеет вид:
А^к = B^к (cos(кф) + i sin(кф) )
при этом |А^к| = В^к.
Для третьей степени получаем: В^3 = 8, следовательно, В = 2
cos(3ф) + i sin(3ф) = -1
Следовательно, 3ф = п + 2пк, к=...-1, 1, 2,...
или ф = п/3 + 2/3пк
Получаем три разных аргумента: п/3, п, 5/3 п
Итак, корнями третьей степени из -8 над полем комплексных чисел являются три числа:
А_1 = 2 (cos(п/3) + i sin(п/3)),
А_2 = 2 (cos(п) + i sin(п) ) = -2,
А_3 = 2 (cos(5п/3) + i sin(5п/3)).
Соответственно, решением исходного уравнения будут три комплексных числа:
А_1 - 3 = 2 (cos(п/3) + i sin(п/3)) - 3,
А_2 - 3 = -5,
А_3 - 3 = 2 (cos(5п/3) + i sin(5п/3)) - 3.
x=-5. Этот ответ получен подстановкой значения -5 в уравнение.
Три корня: вещественный x=-5 и два комплексных x=-2+i*sqrt(3) и x=x=-2-i*sqrt(3).
Похожие вопросы
- Кто-нибудь может помочь найти корни уравнения через дискриминант?
- Как найти корни уравнения ba + b + a = const ?
- Как через определение производной найти производную у=х^(2/3) ? Шаги знаю, но не получается...
- как решить уравнение : x^3 - 3/2x - 5 = 0 ( за формулой Кардано какая-то фигня выходит! ) должно выйти x= 2 !!
- найти числовую последовательность 4, 3, 3, 6, 4, 5, .. вот такая последовательность, ну совсем не мое..
- Как найти уравнение прямой по 3 точкам? Знаю только по двум, а надо по 3, может кто-нибудь знает? Выш. мат.
- Дана система уравнений (х+у) р= 56 (1) (х+р) у= 50 (2) (у+р) х= 26 (3). Каков оптимальный способ решения системы?
- Вот это график вообще не понятно, как это корень из Х? Постройте график у= корень Х и у = - корень Х
- Как решить систему из 2-х уравнений с 3-мя неизвестными?
- Помогите пожалуйста решить. Я забыла как такие уравнения решать. а завтра ГИА. я лох. х^3+7x^2=4x+28