Естественные науки
Как найти площадь многоугольника?
Нужна универсальная формула, которой можно вычислить площадь любого многоугольника, лишь зная длину его сторон, сторон может быть любое количество, углы могут быть только тупые (т. е нет вогнутостей вовнутрь)
Любого или любого правильного многоугольника? ?
Площадь любого правильного многоугольника можно вычислять по формуле
S = n*a^2 / (4tg 180/n) где а длина сторона многоугольника, n -число сторон
Площадь любого правильного многоугольника можно вычислять по формуле
S = n*a^2 / (4tg 180/n) где а длина сторона многоугольника, n -число сторон
Универсальной формулы нет, ведь произвольный многоугольник
не "жёсткая" фигура, его форму и площадь можно изменять, изменяя
углы. Только разбиением на треугольники.
не "жёсткая" фигура, его форму и площадь можно изменять, изменяя
углы. Только разбиением на треугольники.
Можете нарисовать треугольник или четырехугольник, в котором ВСЕ углы тупые?
разделить его на треугольники и сложить сумму площадей всех треугольников
Впрочем, если речь идёт о произвольном выпуклом ("нет вогнутостей вовнутрь") многоугольнике, то необязательно, чтобы углы были только тупые; у любого выпуклого многоугольника может быть три острых внутренних угла.
Для площади произвольных выпуклых многоугольников универсальной формулы нет. Единственно возможный способ указал Ivantrs. Для правильного многоугольника - М. Мамишев.
Для площади произвольных выпуклых многоугольников универсальной формулы нет. Единственно возможный способ указал Ivantrs. Для правильного многоугольника - М. Мамишев.
В первом случае он окажется треугольником, и можно воспользоваться одной из формул: S = 1/2 * а * н, где а — сторона, н — высота к ней; S = 1/2 * а * в * sin (А), где а, в — сторон\ы треугольника, А — угол между известными сторонами; S = √(p * (p - а) * (p - в) * (p - с)), где с — сторона треугольника, к уже обозначенным двум, р — полупериметр, то есть сумма всех трех сторон, разделенная на два.
В общем на работе заморочился с собственным выведением площади... и задался вопросом, почем при большем кол-ве сторон и одинаковым периметром - площадь увеличивается.
Решил через площадь формулу многоугольника вывести S=Pr^2 / ( 4N*tg(180/n) ), где Pr - периметр, N - колличество сторон. Так вот выяснил что N*tg(180/N) -> ПИ, т. е. стремится к числу ПИ, при бесконечно высоких N. увеличивая тем самым площадь до площади идеального круга.
Превращая S=Pr^2 / 4ПИ.
Решил через площадь формулу многоугольника вывести S=Pr^2 / ( 4N*tg(180/n) ), где Pr - периметр, N - колличество сторон. Так вот выяснил что N*tg(180/N) -> ПИ, т. е. стремится к числу ПИ, при бесконечно высоких N. увеличивая тем самым площадь до площади идеального круга.
Превращая S=Pr^2 / 4ПИ.
Похожие вопросы
- Как найти площадь треугольника?
- Как найти площадь криволинейной обьемной фигуры?
- найти площадь равнобедренного треугольника
- найти площадь шестиугольника
- Как найти площадь Ленина?
- кто знает как найти площадь треугольника?? ? помогите!!!
- Как найти площадь ладони
- в равнобедренную трапецию вписана окружность с радиусом равным 12 см и боковой стороной равной 25 см. Найти площадь трап
- Помогите найти площадь поверхности стандартной бутылки Мёбиуса высотой в 20 см и шириной в 5 см
- Как найти площадь крыши арочного ангара, если известно: длина ангара - 30м, ширина -14,5м, высота -9м