Естественные науки

у вас 4 кубика (игра в кости ) КУБИК С 6 ГРАНЯМИ (ОТ 1 ДО 6 ) Какова вероятность выпадения суммы =22 ?

Юрий Кобец
Юрий Кобец
261
у меня 10 штук вышло.
4666 5566 5656 5665
6466 6646 6664
6556 6565 6655

Соответственно, вероятность 10/1296
АИ
Александр Ильин
78 703
Лучший ответ
10/1296= 5/648.
C чего автор не разрешает комментировать ответы - не понимаю. Опять игра в одни ворота?
Впрочем, у автора выпадение трёх шестерок ВОСПРЕЩЕНО! Не говоря о таких комбинациях, как 6-6-5-5 и 5-5-6-6.
Всевозможных комбинаций 1296, благоприятствующих 10.
Конь ли гонит за автором? Что за спешка?
а мне вот что-то знаменатель не нравится.
ведь если кубики одинаковые, то, например, события (3, 2, 5, 1) и (2, 5, 1, 3) неразличимы.
Все уже давно посчитано для всех значений суммы - от 4 до 24. Ещё в начале XVIII века, между прочим.
10/6^4, и есть масса способов это посчитать. А если будешь копать дальше в сторону суммы независимых случайных величин, не перескакивая к предельным теоремам, изучай сразу свертку распределений, а заодно и преобразования Фурье: -)

Там уже на "просто здраво мыслить" далеко не уедешь - с суммами СВ легко придумать задачку, в которой только лишь один здравый смысл тебя не спасет.
Божественная нелепость. Если число сторон известно, так к чему считать длинно? ((1×2×3×4×5×6)÷22)√. Вся вероятность это 5%.
Скромная
Скромная
57 288
"КУБИК С 6 ГРАНЯМИ"
Это важное уточнение... ведь, бывают КУБЫ с иным количеством граней...
Egor Volkov
Egor Volkov
55 991
(1/3)*(1/3)*(1/3)*(1/6)+(1/3)*(1/3)/(1/6)*(1/6)=.. Вроде так.
Вова сбил, про 4 забыл.
(1/3)*(1/3)*(1/3)*(1/6)+(1/3)*(1/3)/(1/6)*(1/6)+(1/2)*(1/6)*(1/6)*(1/6)=
Вероятность выпадения такой суммы - 1/1296. Вероятность выпадения нужного числа 1 кубика - 1/6. Выпадение суммы можно рассмотреть как последовательное выпадение нужного числа в каждом из 4-х кубиков. Такая вероятность - произведение (события-то не связаны, у каждого кубика своя вероятность) вероятностей выпадения конкретного числа в каждом кубике, т. е. (1/6)^4.

Похожие вопросы