Домашние задания: Другие предметы

Как построить y= tg x и y= ctg x?

SB
Saule Baibekova
565
читайте- учите. сохраните - в личке полный ОЧЕНЬ ТОЛКОВЫЙ ТЕКСТ

Графики тангенса и котангенса

Построим график функции

Основные свойства функции :

Данная функция является периодической с периодом . То есть, достаточно рассмотреть отрезок, слева и справа от него ситуация будет бесконечно повторяться.
Андрей Свистунов
Андрей Свистунов
81 783
Лучший ответ
http://raal100.narod2.ru/algebra/funktsii_y__sin_x_y__cos_x_y__mfx_y__fkx_y__tg_x_y__ctg_x/

Функция y = tg x.

Графиком функции y = tg x является тангенсоида.

Достаточно построить часть графика на промежутке от 0 до π/2, а затем можно симметрично продолжить ее на промежутке от 0 до 3π/2

Свойства функции y = tg x:

1) Область определения функции – множество всех действительных чисел, кроме чисел вида
x = π/2 + πk, где k – любое целое число.

Это означает, что на графике функции нет точки, принадлежащей прямой x = π/2,
либо прямой x = 3π/2, либо прямой x = 5π/2, либо прямой x = –π/2 и т. д.

2) Область значений функции (–∞; +∞)

3) Это нечетная функция.

4) Это непрерывная функция на интервале (–π/2; π/2).

5) Это периодическая функция с основным периодом π (Т = π)

6) Функция возрастает на интервале (–π/2; π/2).

7) Функция не ограничена ни сверху, ни снизу. Не имеет ни наименьшего, ни наибольшего значений.

Функция y = ctg x

Графиком функции y = ctg x также является тангенсоида.

Свойства функции y = ctg x:

1) Область определения функции – множество всех действительных чисел, кроме чисел вида
x = πk, где k – любое целое число.

2) Область значений функции (–∞; +∞)

3) Это нечетная функция.

4) Это непрерывная функция.

5) Это периодическая функция с основным периодом π (Т = π)

6) Функция убывает в промежутке (πk; π + πk), где k – любое целое число.

7) Функция не ограничена ни сверху, ни снизу. Не имеет ни наименьшего, ни наибольшего значений.
найди в книжках готовые графики, а если самой, то открой таблицу значений и по ним отметь точки